Long-Term Electrodeposition under a Uniform Parallel Magnetic Field. 2. Flow-Mode Transition from Laminar MHD Flow to Convection Cells with Two-Dimensional (2D) Nucleation

2020 ◽  
Vol 124 (52) ◽  
pp. 11870-11881
Author(s):  
Ryoichi Morimoto ◽  
Miki Miura ◽  
Atsushi Sugiyama ◽  
Makoto Miura ◽  
Yoshinobu Oshikiri ◽  
...  
2020 ◽  
Vol 124 (52) ◽  
pp. 11854-11869 ◽  
Author(s):  
Ryoichi Morimoto ◽  
Miki Miura ◽  
Atsushi Sugiyama ◽  
Makoto Miura ◽  
Yoshinobu Oshikiri ◽  
...  

1998 ◽  
Vol 356 ◽  
pp. 221-257 ◽  
Author(s):  
P. A. DAVIDSON

Arnol'd developed two distinct yet closely related approaches to the linear stability of Euler flows. One is widely used for two-dimensional flows and involves constructing a conserved functional whose first variation vanishes and whose second variation determines the linear (and nonlinear) stability of the motion. The second method is a refinement of Kelvin's energy principle which states that stable steady Euler flows represent extremums in energy under a virtual displacement of the vorticity field. The conserved-functional (or energy-Casimir) method has been extended by several authors to more complex flows, such as planar MHD flow. In this paper we generalize the Kelvin–Arnol'd energy method to two-dimensional inviscid flows subject to a body force of the form −ϕ∇f. Here ϕ is a materially conserved quantity and f an arbitrary function of position and of ϕ. This encompasses a broad class of conservative flows, such as natural-convection planar and poloidal MHD flow with the magnetic field trapped in the plane of the motion, flows driven by electrostatic forces, swirling recirculating flow, self-gravitating flows and poloidal MHD flow subject to an azimuthal magnetic field. We show that stable steady motions represent extremums in energy under a virtual displacement of ϕ and of the vorticity field. That is, d1E=0 at equilibrium and whenever d2E is positive or negative definite the flow is (linearly) stable. We also show that unstable normal modes must have a spatial structure which satisfies d2E=0. This provides a single stability test for a broad class of flows, and we describe a simple universal procedure for implementing this test. In passing, a new test for linear stability is developed. That is, we demonstrate that stability is ensured (for flows of the type considered here) whenever the Lagrangian of the flow is a maximum under a virtual displacement of the particle trajectories, the displacement being of the type normally associated with Hamilton's principle. A simple universal procedure for applying this test is also given. We apply our general stability criteria to a range of flows and recover some familiar results. We also extend these ideas to flows which are subject to more than one type of body force. For example, a new stability criterion is obtained (without the use of Casimirs) for natural convection in the presence of a magnetic field. Nonlinear stability is also considered. Specifically, we develop a nonlinear stability criterion for planar MHD flows which are subject to isomagnetic perturbations. This differs from previous criteria in that we are able to extend the linear criterion into the nonlinear regime. We also show how to extend the Kelvin–Arnol'd method to finite-amplitude perturbations.


Author(s):  
Lyes Khezzar ◽  
Dennis Siginer

Steady two-dimensional natural convection in rectangular cavities has been investigated numerically. The conservation equations of mass, momentum and energy under the assumption of a Newtonian Boussinesq fluid have been solved using the finite volume technique embedded in the Fluent code for a Newtonian (water) and three non Newtonian carbopol fluids. The highly accurate Quick differential scheme was used for discretization. The computations were performed for one Rayleigh number, based on cavity height, of 105 and a Prandtl number of 10 and 700, 6,000 and 1.2×104 for the Newtonian and the three non-Newtonian fluids respectively. In all of the numerical experiments, the channel is heated from below and cooled from the top with insulated side-walls and the inclination angle is varied. The simulations have been carried out for one aspect ratio of 6. Comparison between the Newtonian and the non-Newtonian cases is conducted based on the behaviour of the average Nusselt number with angle of inclination. Both Newtonian and non-Newtonian fluids exhibit similar behavior with a sudden drop around an angle of 50° associated with flow mode transition from multi-cell to single-cell mode.


2002 ◽  
Vol 12 (1-4) ◽  
pp. 412-415
Author(s):  
Yu-Ming Cheng ◽  
Tsai-Yu Huang ◽  
Chao Han Pao ◽  
Chun-Cheng Lee ◽  
C.-T Liang ◽  
...  

2008 ◽  
Vol 78 (23) ◽  
Author(s):  
T. Gokmen ◽  
Medini Padmanabhan ◽  
O. Gunawan ◽  
Y. P. Shkolnikov ◽  
K. Vakili ◽  
...  

JETP Letters ◽  
2004 ◽  
Vol 80 (5) ◽  
pp. 359-362 ◽  
Author(s):  
V. M. Pudalov ◽  
A. S. Kirichenko ◽  
N. N. Klimov ◽  
M. E. Gershenson ◽  
H. Kojima

The first part of the paper is a physical discussion of the way in which a magnetic field affects the stability of a fluid in motion. Particular emphasis is given to how the magnetic field affects the interaction of the disturbance with the mean motion. The second part is an analysis of the stability of plane parallel flows of fluids with finite viscosity and conductivity under the action of uniform parallel magnetic fields. We show that, in general, three-dimensional disturbances are the most unstable, thus disagreeing with the conclusion of Michael (1953) and Stuart (1954). We show how results obtained for two-dimensional disturbances can be used to calculate the most unstable three-dimensional disturbances and thence we prove that a parallel magnetic field can never completely stabilize a parallel flow.


Sign in / Sign up

Export Citation Format

Share Document