Hidden Halogen-Bonding Ability of Fluorine Manifesting in the Hydrogen-Bond Configurations of Hydrogen Fluoride

Author(s):  
Kento Saito ◽  
Hajime Torii
2022 ◽  
Author(s):  
Asia Marie S Riel ◽  
Daniel Adam Decato ◽  
Jiyu Sun ◽  
Orion Berryman

Recent results indicate a halogen bond donor is strengthened through direct interaction with a hydrogen bond to the electron-rich belt of the halogen. Here, this Hydrogen Bond enhanced Halogen Bond...


Author(s):  
M. Ramos Silva ◽  
J. A. Paixão ◽  
A. Matos Beja ◽  
L. Alte da Veiga

2015 ◽  
Vol 71 (8) ◽  
pp. 733-741
Author(s):  
V. S. Minkov ◽  
V. V. Ghazaryan ◽  
E. V. Boldyreva ◽  
A. M. Petrosyan

L-Cysteine hydrogen fluoride, or bis(L-cysteinium) difluoride–L-cysteine–hydrogen fluoride (1/1/1), 2C3H8NO2S+·2F−·C3H7NO2S·HF or L-Cys+(L-Cys...L-Cys+)F−(F−...H—F), provides the first example of a structure with cations of the `triglycine sulfate' type,i.e.A+(A...A+) (whereAandA+are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter-ion. The salt crystallizes in the monoclinic system with the space groupP21. The dimeric (L-Cys...L-Cys+) cation and the dimeric (F−...H—F) anion are formedviastrong O—H...O or F—H...F hydrogen bonds, respectively, with very short O...O [2.4438 (19) Å] and F...F distances [2.2676 (17) Å]. The F...F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O—H...F type, formed by a L-cysteinium cation and a fluoride ion. The corresponding O...F distance of 2.3412 (19) Å seems to be the shortest among O—H...F and F—H...O hydrogen bonds known to date. The single-crystal X-ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above-mentioned hydrogen bonds.


Nature ◽  
1947 ◽  
Vol 160 (4077) ◽  
pp. 870-871 ◽  
Author(s):  
D. POLDER

2017 ◽  
Vol 203 ◽  
pp. 333-346 ◽  
Author(s):  
Sebastiaan B. Hakkert ◽  
Jürgen Gräfenstein ◽  
Mate Erdelyi

We have studied the applicability of15N NMR spectroscopy in the characterization of the very weak halogen bonds of nonfluorinated halogen bond donors with a nitrogenous Lewis base in solution. The ability of the technique to detect the relative strength of iodine-, bromine- and chlorine-centered halogen bonds, as well as solvent and substituent effects was evaluated. Whereas computations on the DFT level indicate that15N NMR chemical shifts reflect the diamagnetic deshielding associated with the formation of a weak halogen bond, the experimentally observed chemical shift differences were on the edge of detectability due to the low molar fraction of halogen-bonded complexes in solution. The formation of the analogous yet stronger hydrogen bond of phenols have induced approximately ten times larger chemical shift changes, and could be detected and correlated to the electronic properties of substituents of the hydrogen bond donors. Overall,15N NMR is shown to be a suitable tool for the characterization of comparably strong secondary interactions in solution, but not sufficiently accurate for the detection of the formation of thermodynamically labile, weak halogen bonded complexes.


Sign in / Sign up

Export Citation Format

Share Document