Elucidating Potential Energy Surfaces for Singlet O2 Reactions with Protonated, Deprotonated, and Di-Deprotonated Cystine Using a Combination of Approximately Spin-Projected Density Functional Theory and Guided-Ion-Beam Mass Spectrometry

2017 ◽  
Vol 121 (33) ◽  
pp. 7844-7854 ◽  
Author(s):  
Wenchao Lu ◽  
I-Hsien “Midas” Tsai ◽  
Yan Sun ◽  
Wenjing Zhou ◽  
Jianbo Liu
2013 ◽  
Vol 446-447 ◽  
pp. 168-171
Author(s):  
Hong Fei Liu ◽  
Xin Min Min ◽  
Hai Xia Yang

The decarbonylation of acetaldehyde assisted by Ni+2, which was selected as a representative system of transition metal ions assisted decarbonylation of acetaldehyde, has been investigated using density functional theory (B3LYP) in conjunction with the 6-31+G** basis sets in C,H,O atoms and Lanl2dz basis sets in Ni atom The geometries and energies of the reactants, intermediates, products and transition states relevant to the reaction were located on the triplet ground potential energy surfaces of [Ni, O, C2,H4]+2. Our calculations indicate the decarbonylation of acetaldehyde takes place through four steps, that is, encounter complexation, CC activation, aldehyde H-shift and nonreactive dissociation, it is that CC activation by Ni+2that lead to the decarbonylation of acetaldehyde.


Sign in / Sign up

Export Citation Format

Share Document