scholarly journals Halide Perovskite Heteroepitaxy: Bond Formation and Carrier Confinement at the PbS–CsPbBr3 Interface

2017 ◽  
Vol 121 (49) ◽  
pp. 27351-27356 ◽  
Author(s):  
Young-Kwang Jung ◽  
Keith T. Butler ◽  
Aron Walsh
Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


2020 ◽  
Author(s):  
Rui Guo ◽  
Xiaotian Qi ◽  
Hengye Xiang ◽  
Paul Geaneoates ◽  
Ruihan Wang ◽  
...  

Vinyl fluorides play an important role in drug development as they serve as bioisosteres for peptide bonds and are found in a range of biologically active molecules. The discovery of safe, general and practical procedures to prepare vinyl fluorides remains an important goal and challenge for synthetic chemistry. Here we introduce an inexpensive and easily-handled reagent and report simple, scalable, and metal-free protocols for the regioselective and stereodivergent hydrofluorination of alkynes to access both the E and Z isomers of vinyl fluorides. These conditions were suitable for a diverse collection of alkynes, including several highly-functionalized pharmaceutical derivatives. Mechanistic and DFT studies support C–F bond formation through a vinyl cation intermediate, with the (E)- and (Z)-hydrofluorination products forming under kinetic and thermodynamic control, respectively.<br>


2020 ◽  
Author(s):  
Sukdev Bag ◽  
Sadhan Jana ◽  
Sukumar Pradhan ◽  
Suman Bhowmick ◽  
Nupur Goswami ◽  
...  

<p>Despite the widespread applications of C–H functionalization, controlling site selectivity remains a significant challenge. Covalently attached directing group (DG) served as an ancillary ligand to ensure proximal <i>ortho</i>-, distal <i>meta</i>- and <i>para</i>-C-H functionalization over the last two decades. These covalently linked DGs necessitate two extra steps for a single C–H functionalization: introduction of DG prior to C–H activation and removal of DG post-functionalization. We introduce here a transient directing group for distal C(<i>sp<sup>2</sup></i>)-H functionalization <i>via</i> reversible imine formation. By overruling facile proximal C-H bond activation by imine-<i>N</i> atom, a suitably designed pyrimidine-based transient directing group (TDG) successfully delivered selective distal C-C bond formation. Application of this transient directing group strategy for streamlining the synthesis of complex organic molecules without any necessary pre-functionalization at the distal position has been explored.</p>


2018 ◽  
Author(s):  
Mohit Kapoor ◽  
Pratibha Chand-Thakuri ◽  
Michael Young

Carbon-carbon bond formation by transition metal-catalyzed C–H activation has become an important strategy to fabricate new bonds in a rapid fashion. Despite the pharmacological importance of <i>ortho</i>-arylbenzylamines, however, effective <i>ortho</i>-C–C bond formation from C–H bond activation of free primary and secondary benzylamines using Pd<sup>II</sup> remains an outstanding challenge. Presented herein is a new strategy for constructing <i>ortho</i>-arylated primary and secondary benzylamines mediated by carbon dioxide (CO<sub>2</sub>). The use of CO<sub>2</sub> is critical to allowing this transformation to proceed under milder conditions than previously reported, and that are necessary to furnish free amine products that can be directly used or elaborated without the need for deprotection. In cases where diarylation is possible, a chelate effect is demonstrated to facilitate selective monoarylation.


2019 ◽  
Author(s):  
Abolghasem (Gus) Bakhoda ◽  
Stefan Wiese ◽  
Christine Greene ◽  
Bryan C. Figula ◽  
Jeffery A. Bertke ◽  
...  

<p>The dinuclear b-diketiminato Ni<sup>II</sup><i>tert</i>-butoxide {[Me<sub>3</sub>NN]Ni}<sub>2</sub>(<i>μ</i>-O<i><sup>t</sup></i>Bu)<sub>2 </sub>(<b>2</b>), synthesized from [Me<sub>3</sub>NN]Ni(2,4-lutidine) (<b>1</b>) and di-<i>tert</i>-butylperoxide, is a versatile precursor for the synthesis of a series of Ni<sup>II</sup>complexes [Me<sub>3</sub>NN]Ni-FG to illustrate C-C, C-N, and C-O bond formation at Ni<sup>II </sup>via radicals. {[Me<sub>3</sub>NN]Ni}<sub>2</sub>(<i>μ</i>-O<i><sup>t</sup></i>Bu)<sub>2 </sub>reacts with nitromethane, alkyl and aryl amines, acetophenone, benzamide, ammonia and phenols to deliver corresponding mono- or dinuclear [Me<sub>3</sub>NN]Ni-FG species (FG = O<sub>2</sub>NCH<sub>2</sub>, R-NH, ArNH, PhC(O)NH, PhC(O)CH<sub>2</sub>, NH<sub>2</sub>and OAr). Many of these Ni<sup>II </sup>complexes are capable of capturing the benzylic radical PhCH(•)CH<sub>3 </sub>to deliver corresponding PhCH(FG)CH<sub>3 </sub>products featuring C-C, C-N or C-O bonds. DFT studies shed light on the mechanism of these transformations and suggest two competing pathways that depend on the nature of the functional groups. These radical capture reactions at [Ni<sup>II</sup>]-FG complexes outline key C-C, C-N, and C-O bond forming steps and suggest new families of nickel radical relay catalysts.</p>


2019 ◽  
Author(s):  
Young-Kwang Jung ◽  
Joaquin Calbo ◽  
Ji-Sang Park ◽  
Lucy D. Wahlley ◽  
Sunghyun Kim ◽  
...  

Cs<sub>4</sub>PbBr<sub>6 </sub>is a member of the halide perovskite family that is built from isolated (zero-dimensional) PbBr<sub>6</sub><sup>4-</sup> octahedra with Cs<sup>+</sup> counter ions. The material exhibits anomalous optoelectronic properties: optical absorption and weak emission in the deep ultraviolet (310 - 375 nm) with efficient luminescence in the green region (~ 540 nm). Several hypotheses have been proposed to explain the giant Stokes shift including: (i) phase impurities; (ii) self-trapped exciton; (iii) defect emission. We explore, using first-principles theory and self-consistent Fermi level analysis, the unusual defect chemistry and physics of Cs<sub>4</sub>PbBr<sub>6</sub>. We find a heavily compensated system where the room-temperature carrier concentrations (< 10<sup>9</sup> cm<sup>-3</sup>) are more than one million times lower than the defect concentrations. We show that the low-energy Br-on-Cs antisite results in the formation of a polybromide (Br<sub>3</sub>) species that can exist in a range of charge states. We further demonstrate from excited-state calculations that tribromide moieties are photoresponsive and can contribute to the observed green luminescence. Photoactivity of polyhalide molecules is expected to be present in other halide perovskite-related compounds where they can influence light absorption and emission. <br>


Sign in / Sign up

Export Citation Format

Share Document