Size-Dependent Onset of Nitric Acid Dissociation in Cs+·(HNO3)(H2O)n=0–11 Clusters at 20 K

Author(s):  
Sayoni Mitra ◽  
Nan Yang ◽  
Laura M. McCaslin ◽  
R. Benny Gerber ◽  
Mark A. Johnson
ACS Omega ◽  
2018 ◽  
Vol 3 (6) ◽  
pp. 6566-6576
Author(s):  
Yannis Ziouane ◽  
Gilles Leturcq

2009 ◽  
Vol 49 (2) ◽  
pp. 251-259 ◽  
Author(s):  
Shuzhi Wang ◽  
Roberto Bianco ◽  
James T. Hynes

Author(s):  
M. A. Listvan ◽  
R. P. Andres

Knowledge of the function and structure of small metal clusters is one goal of research in catalysis. One important experimental parameter is cluster size. Ideally, one would like to produce metal clusters of regulated size in order to characterize size-dependent cluster properties.A source has been developed which is capable of producing microscopic metal clusters of controllable size (in the range 5-500 atoms) This source, the Multiple Expansion Cluster Source, with a Free Jet Deceleration Filter (MECS/FJDF) operates as follows. The bulk metal is heated in an oven to give controlled concentrations of monomer and dimer which were expanded sonically. These metal species were quenched and condensed in He and filtered to produce areosol particles of a controlled size as verified by mass spectrometer measurements. The clusters were caught on pre-mounted, clean carbon films. The grids were then transferred in air for microscopic examination. MECS/FJDF was used to produce two different sizes of silver clusters for this study: nominally Ag6 and Ag50.


Author(s):  
Lawrence W. Ortiz ◽  
Bonnie L. Isom

A procedure is described for the quantitative transfer of fibers and particulates collected on membrane filters to electron microscope (EM) grids. Various Millipore MF filters (Millipore AA, HA, GS, and VM; 0.8, 0.45, 0.22 and 0.05 μm mean pore size) have been used with success. Observed particle losses have not been size dependent and have not exceeded 10%. With fibers (glass or asbestos) as the collected media this observed loss is approximately 3%.


Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


1916 ◽  
Vol 82 (2122supp) ◽  
pp. 150-150
Author(s):  
R. Seligman ◽  
P. Williams
Keyword(s):  

1977 ◽  
Vol 38 (C1) ◽  
pp. C1-267-C1-269 ◽  
Author(s):  
C. M. SRIVASTAVA ◽  
M. J. PATNI ◽  
N. G. NANADIKAR
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document