Probing Orientations and Conformations of Peptides and Proteins at Buried Interfaces

Author(s):  
Wen Guo ◽  
Tieyi Lu ◽  
Zahra Gandhi ◽  
Zhan Chen
Keyword(s):  
2019 ◽  
Author(s):  
HanByul Chang ◽  
Paul Ohno ◽  
Yangdongling Liu ◽  
Franz Geiger

We report the detection of charge reversal induced by the adsorption of a cationic polyelectrolyte, poly(allylamine) hydrochloride (PAH), to buried supported lipid bilayers (SLBs), used as idealized model biological membranes. We observe changes in the surface potential in isolation from other contributors to the total SHG response by extracting the phase-shifted potential-dependent third-order susceptibility from the overall SHG signal. We demonstrate the utility of this technique in detecting both the sign of the surface potential and the point of charge reversal at buried interfaces without any prior information or complementary techniques<i>.</i>Furthermore, isolation of the second-order susceptibility contribution from the overall SHG response allows us to directly monitor changes in the Stern Layer. Finally, we characterize the Stern and Diffuse Layers over single-component SLBs formed from three different zwitterionic lipids of different gel-to-fluid phase transition temperatures (T<sub>m</sub>s). We determine whether the surface potential changes with the physical phase state (gel, transitioning, or fluid) of the SLB and incorporate 20 percent of negatively charged lipids to the zwitterionic SLB to investigate how the surface potential changes with surface charge.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3894
Author(s):  
Claus Mattheck ◽  
Christian Greiner ◽  
Klaus Bethge ◽  
Iwiza Tesari ◽  
Karlheinz Weber

In tribologically loaded materials, folding instabilities and vortices lead to the formation of complex internal structures. This is true for geological as well as nanoscopic contacts. Classically, these structures have been described by Kelvin–Helmholtz instabilities or shear localization. We here introduce an alternative explanation based on an intuitive approach referred to as the force cone method. It is considered how whirls are situated near forces acting on a free surface of an elastic or elastoplastic solid. The force cone results are supplemented by finite element simulations. Depending on the direction of the acting force, one or two whirls are predicted by the simplified force cone method. In 3D, there is always a ring shaped whirl present. These modelling findings were tested in simple model experiments. The results qualitatively match the predictions and whirl formation was found. The force cone method and the experiments may seem trivial, but they are an ideal tool to intuitively understand the presence of whirls within a solid under a tribological load. The position of these whirls was found at the predicted places and the force cone method allows a direct approach to understand the complex processes in the otherwise buried interfaces of tribologically loaded materials.


Author(s):  
Hina Verma ◽  
Karine Le Guen ◽  
Renaud Delaunay ◽  
Iyas Ismail ◽  
Vita Ilakovac ◽  
...  

2015 ◽  
Vol 48 (3) ◽  
pp. 786-796 ◽  
Author(s):  
Maheswar Nayak ◽  
P. C. Pradhan ◽  
G. S. Lodha

Element-specific structural analysis at the buried interface of a low electron density contrast system is important in many applied fields. The analysis of nanoscaled Si/B4C buried interfaces is demonstrated using resonant X-ray reflectivity. This technique combines information about spatial modulations of charges provided by scattering, which is further enhanced near the resonance, with the sensitivity to electronic structure provided by spectroscopy. Si/B4C thin-film structures are studied by varying the position of B4C in Si layers. Measured values of near-edge optical properties are correlated with the resonant reflectivity profile to quantify the element-specific composition. It is observed that, although Si/B4C forms a smooth interface, there are chemical changes in the sputtered B4C layer. Nondestructive quantification of the chemical changes and the spatial distribution of the constituents is reported.


2008 ◽  
Vol 15 (6) ◽  
pp. 600-605 ◽  
Author(s):  
Michael Paulus ◽  
Daniela Lietz ◽  
Christian Sternemann ◽  
Kaveh Shokuie ◽  
Florian Evers ◽  
...  
Keyword(s):  
X Ray ◽  

2012 ◽  
Vol 1 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Peter Fischer ◽  
Charles S. Fadley

AbstractThe magnetic properties of matter continue to be a vibrant research area driven both by scientific curiosity to unravel the basic physical processes which govern magnetism and the vast and diverse utilization of magnetic materials in current and future devices, e.g., in information and sensor technologies. Relevant length and time scales approach fundamental limits of magnetism and with state-of-the-art synthesis approaches we are able to create and tailor unprecedented properties. Novel analytical tools are required to match these advances and soft X-ray probes are among the most promising ones. Strong and element-specific magnetic X-ray dichroism effects as well as the nanometer wavelength of photons and the availability of fsec short and intense X-ray pulses at upcoming X-ray sources enable unique experimental opportunities for the study of magnetic behavior. This article provides an overview of recent achievements and future perspectives in magnetic soft X-ray spectromicroscopies which permit us to gain spatially resolved insight into the ultrafast spin dynamics and the magnetic properties of buried interfaces of advanced magnetic nanostructures.


Sign in / Sign up

Export Citation Format

Share Document