Temperature-Dependent Transient Absorption Spectroscopy Elucidates Trapped-Hole Dynamics in CdS and CdSe Nanorods

2019 ◽  
Vol 10 (11) ◽  
pp. 2782-2787 ◽  
Author(s):  
James K. Utterback ◽  
Jesse L. Ruzicka ◽  
Hayden Hamby ◽  
Joel D. Eaves ◽  
Gordana Dukovic
2021 ◽  
Author(s):  
Ying Liu ◽  
Jianmin Lu ◽  
Qianxiao Zhang ◽  
Yajie Bai ◽  
Xuliang Pang ◽  
...  

Decoration of Ag-ultrathin Ni-MOF onside Cu2O was firstly fabricated. The charge-transfer dynamics at heterostructure was in-depth revealed by ultrafast transient absorption spectroscopy. NH3 yield rate (4.63 μg h-1 cm-2) with...


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Giovanni Cistaro ◽  
Luis Plaja ◽  
Fernando Martín ◽  
Antonio Picón

Author(s):  
Junjie Chen ◽  
Sen Guo ◽  
Dabin Lin ◽  
Zhaogang Nie ◽  
Chung-Che Huang ◽  
...  

Femtosecond transient absorption spectroscopy has been employed to unravel separate initial nonequilibrium dynamic process of photo-injected electrons and holes during the formation process of the lowest excitons at the K-valley...


Author(s):  
Romain Geneaux ◽  
Hugo J. B. Marroux ◽  
Alexander Guggenmos ◽  
Daniel M. Neumark ◽  
Stephen R. Leone

Attosecond science opened the door to observing nuclear and electronic dynamics in real time and has begun to expand beyond its traditional grounds. Among several spectroscopic techniques, X-ray transient absorption spectroscopy has become key in understanding matter on ultrafast time scales. In this review, we illustrate the capabilities of this unique tool through a number of iconic experiments. We outline how coherent broadband X-ray radiation, emitted in high-harmonic generation, can be used to follow dynamics in increasingly complex systems. Experiments performed in both molecules and solids are discussed at length, on time scales ranging from attoseconds to picoseconds, and in perturbative or strong-field excitation regimes. This article is part of the theme issue ‘Measurement of ultrafast electronic and structural dynamics with X-rays’.


Sign in / Sign up

Export Citation Format

Share Document