Evaluation of Aromatic Thiols as Photoinitiators

2020 ◽  
Vol 53 (13) ◽  
pp. 5237-5247 ◽  
Author(s):  
Dillon M. Love ◽  
Benjamin D. Fairbanks ◽  
Christopher N. Bowman
Keyword(s):  
2013 ◽  
Vol 464-465 ◽  
pp. 332-338 ◽  
Author(s):  
Sayoko Nagashima ◽  
Hitomi Yamazaki ◽  
Kentaro Kudo ◽  
Satoshi Kamiguchi ◽  
Teiji Chihara

Synlett ◽  
2021 ◽  
Author(s):  
Maki Minakawa ◽  
Keisuke Minami ◽  
Yuya Sato

AbstractA simple and environmentally friendly method to prepare S-heterocycles by cyclization of aromatic thiols and diols with H2O as a byproduct is described. The Sc(OTf)3-catalyzed dehydrative cyclizations of aromatic thiols and diols provided the corresponding thiopyran and thiophene derivatives. Control experiments were also performed to obtain insights into the reaction pathway


Author(s):  
Volkan Fındık ◽  
Basak Koca Fındık ◽  
Viktorya Aviyente ◽  
Antonio Monari

In this work, we report the photophysical properties of three thiol derivatives, commonly used as photoinitiators in thiol–ene free radical polymerization, the ultimate goal being to rationalize the main reason behind the photoinitiation efficiency.


2021 ◽  
Vol 8 ◽  
Author(s):  
Muhammad Imran ◽  
Muhammad Jawwad Saif ◽  
Tahir Farooq ◽  
Javed Iqbal

Thiols are efficient capping agents used for the synthesis of semiconductor and metal nanoparticles. Commonly, long-chain thiols are used as passivating agents to provide stabilization to nanoparticles. Theoretical methods rarely reported aromatic thiol ligands’ effects on small-sized CdTe quantum dots’ structural and electronic properties. We have studied and compared the structural and electronic properties of (i) bare and (ii) aromatic thiols (thiophenol, 4-methoxybenzenethiol, 4-mercaptobenzonitrile, and 4-mercaptobenzoic acid) capped CdnTen quantum dots (QDs). Aromatic thiols are used as thiol-radical because of the higher tendency of thiol-radicals to bind with Cd atoms. This work provides an understanding of how the capping agents affect specific properties. The results show that all aromatic thiol-radical ligands caused significant structural distortion in the geometries. The aromatic thiol-radical ligands stabilize LUMOs, stabilize or destabilize HOMOs, and decrease HOMO-LUMO gaps for all the capped QDs. The stabilization of LUMOs is more pronounced than the destabilization of HOMOs. We also studied the effect of solvent on structural and electronic properties. TD-DFT calculations were performed to calculate the absorption spectra of bare and capped QDs, and all the capping ligands resulted in the redshift of absorption spectra.


Sign in / Sign up

Export Citation Format

Share Document