Making Hydrophilic Polymers Thermoresponsive: The Upper Critical Solution Temperature of Copolymers of Acrylamide and Acrylic Acid

2021 ◽  
Author(s):  
Guillaume Beaudoin ◽  
Anne Lasri ◽  
Chuanzhuang Zhao ◽  
Benoît Liberelle ◽  
Gregory De Crescenzo ◽  
...  
2011 ◽  
Vol 233-235 ◽  
pp. 2669-2673
Author(s):  
Yan Zhi Liu ◽  
Yi Jing Li ◽  
Su Rui Zhao ◽  
Kun Yuan ◽  
Guo Fang Zuo ◽  
...  

The temperature sensitive behavior and the phase behavior of linear poly(N-isopropylacrylamide) (PNIPA) in water-additive systems were investigated via turbidity measurements.. Three kinds of additives, including acrylic acid (AA), acryl amide (AM) andN-vinyl-2-pyrrolidone (VP), were selected. AM and VP systems only exhibited a different lower critical solution temperatures (LCST) behavior with different additive concentrations, and in low concentration of AM or VP, LCST decreases with additive concentration increasing, but in higher concentration, LCST decreases with additive concentration increasing. However, it was first detected the coexistence of a LCST with an upper critical solution temperature (UCST) in AA system. The systems studied here are alternative functional molecular material for the shading agent in some special conditions.


Soft Matter ◽  
2021 ◽  
Author(s):  
Aliaksei Aliakseyeu ◽  
Victoria Albright ◽  
Danielle Yarbrough ◽  
Samantha Hernandez ◽  
Qing Zhou ◽  
...  

This work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid)...


Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 148
Author(s):  
Hirokazu Fukumoto ◽  
Kazuhiko Ishihara ◽  
Shin-Ichi Yusa

A mixed aqueous solution of hydrophilic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly(acrylic acid) (PAAc) becomes cloudy under acidic conditions at room temperature. The pendant carboxylic acid groups in PAAc form hydrogen bonds with the ester and phosphate groups in PMPC. While the polymers aggregate under acidic conditions, neither one associate under basic conditions because of the deprotonation of the pendant carboxy groups in PAAc. We observed that the interpolymer complex formed from PMPC, and PAAc was dissociated in aqueous solutions with increasing temperature, which is an upper critical solution temperature behavior. With increasing temperature, the molecular motion increased to dissociate the interpolymer complex. The phase transition temperature increased with increasing polymer and salt concentrations, and with decreasing pH.


Sign in / Sign up

Export Citation Format

Share Document