Synthesis, Characterization, and Photovoltaic Properties of 4,8-Dithienylbenzo[1,2-b:4,5-b′]dithiophene-Based Donor–Acceptor Polymers with New Polymerization and 2D Conjugation Extension Pathways: A Potential Donor Building Block for High Performance and Stable Inverted Organic Solar Cells

2015 ◽  
Vol 48 (8) ◽  
pp. 2454-2465 ◽  
Author(s):  
Nallan Chakravarthi ◽  
Kumarasamy Gunasekar ◽  
Chang Su Kim ◽  
Dong-Ho Kim ◽  
Myungkwan Song ◽  
...  
2014 ◽  
Vol 2 (15) ◽  
pp. 5427-5433 ◽  
Author(s):  
Shugang Li ◽  
Zhongcheng Yuan ◽  
Jianyu Yuan ◽  
Ping Deng ◽  
Qing Zhang ◽  
...  

An expanded isoindigo unit (IBTI) has been incorporated into a donor–acceptor conjugated polymer for the first time. The PCE of the solar cell device based on the new polymer reached 6.41% with a fill factor of 0.71.


RSC Advances ◽  
2015 ◽  
Vol 5 (130) ◽  
pp. 107566-107574 ◽  
Author(s):  
Xin Liu ◽  
Yuan Xie ◽  
Xinyi Cai ◽  
Yunchuan Li ◽  
Hongbin Wu ◽  
...  

Four solution-processable acceptor–donor–acceptor structured organic molecules with isoindigo as terminal acceptor units and different aromatic rigid planar cores as donor units were designed and synthesized as the acceptor materials in organic solar cells (OSCs).


2020 ◽  
Vol 8 (35) ◽  
pp. 12265-12271
Author(s):  
Jong-Woon Ha ◽  
Hee Su Kim ◽  
Chang Eun Song ◽  
Hea Jung Park ◽  
Do-Hoon Hwang

A new heterocyclic aromatic structure, thieno[3,2-c]quinolin-4(5H)-one (TQO), was designed and synthesized as an electron-accepting building block for donor–acceptor-type copolymers.


2017 ◽  
Vol 50 (19) ◽  
pp. 7567-7576 ◽  
Author(s):  
Jae Hoon Yun ◽  
Hyungju Ahn ◽  
Phillip Lee ◽  
Min Jae Ko ◽  
Hae Jung Son

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruimin Zhou ◽  
Zhaoyan Jiang ◽  
Chen Yang ◽  
Jianwei Yu ◽  
Jirui Feng ◽  
...  

AbstractThe high efficiency all-small-molecule organic solar cells (OSCs) normally require optimized morphology in their bulk heterojunction active layers. Herein, a small-molecule donor is designed and synthesized, and single-crystal structural analyses reveal its explicit molecular planarity and compact intermolecular packing. A promising narrow bandgap small-molecule with absorption edge of more than 930 nm along with our home-designed small molecule is selected as electron acceptors. To the best of our knowledge, the binary all-small-molecule OSCs achieve the highest efficiency of 14.34% by optimizing their hierarchical morphologies, in which the donor or acceptor rich domains with size up to ca. 70 nm, and the donor crystals of tens of nanometers, together with the donor-acceptor blending, are proved coexisting in the hierarchical large domain. All-small-molecule photovoltaic system shows its promising for high performance OSCs, and our study is likely to lead to insights in relations between bulk heterojunction structure and photovoltaic performance.


2020 ◽  
Vol 8 (18) ◽  
pp. 6293-6298
Author(s):  
Cancan Jiao ◽  
Ziqi Guo ◽  
Binqiao Sun ◽  
Yuan-qiu-qiang Yi ◽  
Lingxian Meng ◽  
...  

An acceptor molecule with an asymmetric backbone, CC10, has been designed, which achieved a power conversion efficiency of 11.78%.


2020 ◽  
Vol 4 (12) ◽  
pp. 3487-3504 ◽  
Author(s):  
Jiajun Zhao ◽  
Chao Yao ◽  
Muhammad Umair Ali ◽  
Jingsheng Miao ◽  
Hong Meng

In this review, we focus on the recent advances in organic solar cells enabled by A–DA′D–A type acceptors and summarize the correlation between molecular structure, molecular packings, optoelectronic properties, and photovoltaic performance.


Sign in / Sign up

Export Citation Format

Share Document