Influence of Pressure on Glass Formation in a Simulated Polymer Melt

2017 ◽  
Vol 50 (6) ◽  
pp. 2585-2598 ◽  
Author(s):  
Wen-Sheng Xu ◽  
Jack F. Douglas ◽  
Karl F. Freed
Keyword(s):  
2015 ◽  
Vol 112 (10) ◽  
pp. 2966-2971 ◽  
Author(s):  
Beatriz A. Pazmiño Betancourt ◽  
Paul Z. Hanakata ◽  
Francis W. Starr ◽  
Jack F. Douglas

The study of glass formation is largely framed by semiempirical models that emphasize the importance of progressively growing cooperative motion accompanying the drop in fluid configurational entropy, emergent elasticity, or the vanishing of accessible free volume available for molecular motion in cooled liquids. We investigate the extent to which these descriptions are related through computations on a model coarse-grained polymer melt, with and without nanoparticle additives, and for supported polymer films with smooth or rough surfaces, allowing for substantial variation of the glass transition temperature and the fragility of glass formation. We find quantitative relations between emergent elasticity, the average local volume accessible for particle motion, and the growth of collective motion in cooled liquids. Surprisingly, we find that each of these models of glass formation can equally well describe the relaxation data for all of the systems that we simulate. In this way, we uncover some unity in our understanding of glass-forming materials from perspectives formerly considered as distinct.


Author(s):  
A. C. Reimschuessel ◽  
V. Kramer

Staining techniques can be used for either the identification of different polymers or for the differentiation of specific morphological domains within a given polymer. To reveal morphological features in nylon 6, we choose a technique based upon diffusion of the staining agent into accessible regions of the polymer.When a crystallizable polymer - such as nylon 6 - is cooled from the melt, lamellae form by chainfolding of the crystallizing long chain macromolecules. The regions between adjacent lamellae represent the less ordered amorphous domains into which stain can diffuse. In this process the lamellae will be “outlined” by the dense stain, giving rise to contrast comparable to that obtained by “negative” staining techniques.If the cooling of the polymer melt proceeds relatively slowly - as in molding operations - the lamellae are usually arranged in a radial manner. This morphology is referred to as spherulitic.


1990 ◽  
Vol 51 (C4) ◽  
pp. C4-111-C4-117 ◽  
Author(s):  
L. J. GALLEGO ◽  
J. A. SOMOZA ◽  
H. M. FERNANDEZ ◽  
J. A. ALONSO

2014 ◽  
Vol 35 (1) ◽  
pp. 121-135 ◽  
Author(s):  
Tomasz Rydzkowski ◽  
Iwona Michalska-Pożoga

Abstract The paper presents the summary of research on polymer melt particle motion trajectories in a disc zone of a screw-disk extruder. We analysed two models of its structure, different in levels of taken simplifications. The analysis includes computer simulations of material particle flow and results of experimental tests to determine the properties of the resultant extrudate. Analysis of the results shows that the motion of melt in the disk zone of a screw-disk extruder is a superposition of pressure and dragged streams. The observed trajectories of polymer particles and relations of mechanical properties and elongation of the molecular chain proved the presence of a stretching effect on polymer molecular chains.


Author(s):  
Felipe Oliveira Basso ◽  
Paulo Zdanski ◽  
Diego Beppler ◽  
Miguel Vaz Jr.

1993 ◽  
Vol 8 (4) ◽  
pp. 328-334
Author(s):  
T. Kegasawa ◽  
J. L. White
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document