scholarly journals Microscopic Control of Nonequilibrium Systems: When Electrochemistry Meets Nanotechnology

Nano Letters ◽  
2021 ◽  
Author(s):  
Chong Liu
2017 ◽  
Vol 114 (29) ◽  
pp. 7513-7518 ◽  
Author(s):  
Ming Han ◽  
Jing Yan ◽  
Steve Granick ◽  
Erik Luijten

Thermal energy agitates all matter, and its competition with ordering tendencies is a fundamental organizing principle in the physical world; this observation suggests that an effective temperature might emerge when external energy input enhances agitation. However, despite the repeated proposal of this concept based on kinetics for various nonequilibrium systems, the value of an effective temperature as a thermodynamic control parameter has been unclear. Here, we introduce a two-component system of driven Janus colloids, such that collisions induced by external energy sources agitate the system, and we demonstrate quantitative agreement with hallmarks of statistical thermodynamics for binary phase behavior: the archetypal phase diagram with equilibrium critical exponents, Gaussian displacement distributions, and even capillarity. The significance is to demonstrate a class of dynamical conditions under which thermodynamic analysis extends quantitatively to systems that are decidedly nonequilibrium except that the effective temperature differs from the physical temperature.


2018 ◽  
Vol 29 (10) ◽  
pp. 1850093
Author(s):  
ShengJie Qiang ◽  
Bin Jia ◽  
QingXia Huang

The asymmetric simple exclusion process (ASEP) is a paradigmatic model for nonequilibrium systems and has been used in many applications. Airplane boarding provides another interesting example where this framework can be applied. We propose a simple model for boarding process, in which a particle moves along a one-dimensional aisle after being injected, and finally is removed at a reserved site. Different from the typical ASEP model, particles are removed in a disorderly or a parallel way. Detailed calculations and discussions of some related characteristics, such as mean boarding time and parallelism indicator, are provided based on Monte-Carlo simulations. Results show that three phases exist in the boarding process: free-flow, jamming and maximum current. Transitions between these phases are governed by the difference between the injection and removal rate. Further analysis shows how the scaling behavior depends on the system size and the boarding conditions. Those results emphasize the importance of utilizing the whole length of the aisle to reduce the boarding time when designing an efficient boarding strategy.


2001 ◽  
Vol 64 (4) ◽  
Author(s):  
Toshiaki Tao ◽  
Akira Yoshimori ◽  
Takashi Odagaki

Sign in / Sign up

Export Citation Format

Share Document