Single-Photon Emitters in Boron Nitride Nanococoons

Nano Letters ◽  
2018 ◽  
Vol 18 (4) ◽  
pp. 2683-2688 ◽  
Author(s):  
Joshua Ziegler ◽  
Andrew Blaikie ◽  
Aidin Fathalizadeh ◽  
David Miller ◽  
Fehmi S. Yasin ◽  
...  
2021 ◽  
Vol 125 (6) ◽  
pp. 1325-1335 ◽  
Author(s):  
Cesar Jara ◽  
Tomáš Rauch ◽  
Silvana Botti ◽  
Miguel A. L. Marques ◽  
Ariel Norambuena ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shiyuan Gao ◽  
Hsiao-Yi Chen ◽  
Marco Bernardi

AbstractPoint defects in hexagonal boron nitride (hBN) have attracted growing attention as bright single-photon emitters. However, understanding of their atomic structure and radiative properties remains incomplete. Here we study the excited states and radiative lifetimes of over 20 native defects and carbon or oxygen impurities in hBN using ab initio density functional theory and GW plus Bethe-Salpeter equation calculations, generating a large data set of their emission energy, polarization and lifetime. We find a wide variability across quantum emitters, with exciton energies ranging from 0.3 to 4 eV and radiative lifetimes from ns to ms for different defect structures. Through a Bayesian statistical analysis, we identify various high-likelihood charge-neutral defect emitters, among which the native VNNB defect is predicted to possess emission energy and radiative lifetime in agreement with experiments. Our work advances the microscopic understanding of hBN single-photon emitters and introduces a computational framework to characterize and identify quantum emitters in 2D materials.


ACS Photonics ◽  
2016 ◽  
Vol 3 (12) ◽  
pp. 2490-2496 ◽  
Author(s):  
Zav Shotan ◽  
Harishankar Jayakumar ◽  
Christopher R. Considine ◽  
Mažena Mackoit ◽  
Helmut Fedder ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 843
Author(s):  
Gabriel I. López-Morales ◽  
Aziza Almanakly ◽  
Sitakanta Satapathy ◽  
Nicholas V. Proscia ◽  
Harishankar Jayakumar ◽  
...  

2018 ◽  
Vol 3 (3) ◽  
pp. 27-34 ◽  
Author(s):  
Balaji Sompalle ◽  
Jérôme Borme ◽  
Fátima Cerqueira ◽  
Tangyou Sun ◽  
Rui Campos ◽  
...  

Hexagonal boron nitride (h-BN) has potential applications in protective coatings, single photon emitters and as substrate for graphene electronics. In this paper, we report on the growth of h-BN by chemical vapor deposition (CVD) using ammonia borane as the precursor. Use of CVD allows controlled synthesis over large areas defined by process parameters, e.g. temperature, time, process chamber pressure and gas partial pressures. Furthermore, independently grown graphene and h-BN layers are put together to realize enhancement in electronic properties of graphene.


2021 ◽  
Author(s):  
Qinghai Tan ◽  
Jia-Min Lai ◽  
Xue-Lu Liu ◽  
Dan Guo ◽  
Yong-Zhou Xue ◽  
...  

Abstract Quantum emitters are needed for a myriad of applications ranging from quantum sensing to quantum computing. Hexagonal boron nitride (hBN) quantum emitters are the most promising solid-state platform to date due to its high brightness, stability, and the possibility of spin photon interface. However, the understanding of the physical origins of the single-photon emitters (SPEs) is still limited. Here, we present concrete and conclusive evidence that the dense SPEs in hBN, across entire visible spectrum, can be well explained by donor-acceptor pairs (DAPs). Based on the DAP transition generation mechanism, we have calculated their wavelength fingerprint, matching well with the experimentally observed photoluminescence spectrum. Our work serves as a step forward for the physical understanding of SPEs in hBN and their applications in quantum technologies.


2020 ◽  
Vol 117 (24) ◽  
pp. 13214-13219 ◽  
Author(s):  
Maciej Koperski ◽  
Diana Vaclavkova ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
Kostya S. Novoselov ◽  
...  

When serving as a protection tissue and/or inducing a periodic lateral modulation for/in atomically thin crystals, hexagonal boron nitride (hBN) has revolutionized the research on van der Waals heterostructures. By itself, hBN appears as an emergent wide-bandgap material, which, importantly, can be optically bright in the far-ultraviolet range and which frequently displays midgap defect-related centers of yet-unclear origin, but, interestingly, acting as single-photon emitters. Controlling the hBN doping is of particular interest in view of the possible practical use of this material. Here, we demonstrate that enriching hBN with carbon (C) activates an optical response of this material in the form of a series of well-defined resonances in visible and near-infrared regions, which appear in the luminescence spectra measured under below-bandgap excitation. Two, qualitatively different, C-related radiative centers are identified: One follows the Franck–Condon principle that describes transitions between two defect states with emission/annihilation of optical phonons, and the other shows atomic-like resonances characteristic of intradefect transitions. With a detailed characterization of the energy structure and emission dynamics of these radiative centers, we contribute to the development of controlled doping of hBN with midgap centers.


Sign in / Sign up

Export Citation Format

Share Document