Liquid-Phase Synthesis of Nanosized Na11Sn2PS12 Solid Electrolytes for Room Temperature All-Solid-State Sodium Batteries

2021 ◽  
Vol 4 (2) ◽  
pp. 1467-1473
Author(s):  
Wei Weng ◽  
Hongli Wan ◽  
Gaozhan Liu ◽  
Liping Wu ◽  
Jinghua Wu ◽  
...  
Nanoscale ◽  
2021 ◽  
Author(s):  
Han Wang ◽  
Genfu Zhao ◽  
Shimin Wang ◽  
Dangling Liu ◽  
Zhi-Yuan Mei ◽  
...  

NASICON-type Na3Zr2Si2PO12 (NZSP) is supposed to be one of the most potential solid electrolytes with the characteristics of high ionic conductivity and safety for solid-state sodium batteries. Many methods have...


2021 ◽  
Vol 2 (1) ◽  
pp. 39-48
Author(s):  
Nguyen H. H. Phuc ◽  
Takaki Maeda ◽  
Tokoharu Yamamoto ◽  
Hiroyuki Muto ◽  
Atsunori Matsuda

A solid solution of a 100Li3PS4·xLi3PO4 solid electrolyte was easily prepared by liquid-phase synthesis. Instead of the conventional solid-state synthesis methods, ethyl propionate was used as the reaction medium. The initial stage of the reaction among Li2S, P2S5 and Li3PO4 was proved by ultraviolet-visible spectroscopy. The powder X-ray diffraction (XRD) results showed that the solid solution was formed up to x = 6. At x = 20, XRD peaks of Li3PO4 were detected in the prepared sample after heat treatment at 170 °C. However, the samples obtained at room temperature showed no evidence of Li3PO4 remaining for x = 20. Solid phosphorus-31 magic angle spinning nuclear magnetic resonance spectroscopy results proved the formation of a POS33− unit in the sample with x = 6. Improvements of ionic conductivity at room temperature and activation energy were obtained with the formation of the solid solution. The sample with x = 6 exhibited a better stability against Li metal than that with x = 0. The all-solid-state half-cell employing the sample with x = 6 at the positive electrode exhibited a better charge–discharge capacity than that employing the sample with x = 0.


2017 ◽  
Vol 365 ◽  
pp. 7-11 ◽  
Author(s):  
Nguyen Huu Huy Phuc ◽  
Eito Hirahara ◽  
Kei Morikawa ◽  
Hiroyuki Muto ◽  
Atsunori Matsuda

ACS Nano ◽  
2018 ◽  
Vol 12 (3) ◽  
pp. 2809-2817 ◽  
Author(s):  
Hongli Wan ◽  
Jean Pierre Mwizerwa ◽  
Xingguo Qi ◽  
Xin Liu ◽  
Xiaoxiong Xu ◽  
...  

2021 ◽  
Vol MA2021-02 (1) ◽  
pp. 152-152
Author(s):  
John Chmiola ◽  
Zachary Favors ◽  
Fabio Albano

Nano Energy ◽  
2019 ◽  
Vol 66 ◽  
pp. 104109 ◽  
Author(s):  
Hongli Wan ◽  
Jean Pierre Mwizerwa ◽  
Fudong Han ◽  
Wei Weng ◽  
Jing Yang ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Takaaki Ota ◽  
Shota Uchiyama ◽  
Keiichi Tsukada ◽  
Makoto Moriya

Molecular crystals have attracted increasing attention as a candidate for innovative solid electrolytes with solid-state Mg-ion conductivity. In this work, we synthesized a novel Mg-ion-conducting molecular crystal, Mg{N(SO2CF3)2}2(CH3OC5H9)2 (Mg(TFSA)2(CPME)2), composed of Mg bis(trifluoromethanesulfonyl)amide (Mg(TFSA)2) and cyclopentyl methyl ether (CPME) and elucidated its crystal structure. We found that the obtained Mg(TFSA)2(CPME)2 exhibits solid-state ionic conductivity at room temperature and a high Mg-ion transference number of 0.74. Contrastingly, most Mg-conductive inorganic solid electrolytes require heating above 150–300°C to exhibit ionic conductivity. These results further prove the suitability of molecular crystals as candidates for Mg-ion-conducting solid electrolytes.


Sign in / Sign up

Export Citation Format

Share Document