Scalable Processing of Low-Temperature TiO2 Nanoparticles for High-Efficiency Perovskite Solar Cells

2018 ◽  
Vol 2 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Ihteaz M. Hossain ◽  
Damien Hudry ◽  
Florian Mathies ◽  
Tobias Abzieher ◽  
Somayeh Moghadamzadeh ◽  
...  
Author(s):  
Ihteaz Muhaimeen Hossain ◽  
Florian Mathies ◽  
Tobias Abzieher ◽  
Somayeh Moghadamzadeh ◽  
Bryce S. Richards ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 591
Author(s):  
Keke Song ◽  
Xiaoping Zou ◽  
Huiyin Zhang ◽  
Chunqian Zhang ◽  
Jin Cheng ◽  
...  

The electron transport layer (ETL) is critical to carrier extraction for perovskite solar cells (PSCs). Moreover, the morphology and surface condition of the ETL could influence the topography of the perovskite layer. ZnO, TiO2, and SnO2 were widely investigated as ETL materials. However, TiO2 requires a sintering process under high temperature and ZnO has the trouble of chemical instability. SnO2 possesses the advantages of low-temperature fabrication and high conductivity, which is critical to the performance of PSCs prepared under low temperature. Here, we optimized the morphology and property of SnO2 by modulating the concentration of a SnO2 colloidal dispersion solution. When adjusting the concentration of SnO2 colloidal dispersion solution to 5 wt.% (in water), SnO2 film indicated better performance and the perovskite film has a large grain size and smooth surface. Based on high efficiency (16.82%), the device keeps a low hysteresis index (0.23).


2017 ◽  
Vol 8 (5) ◽  
pp. 1701683 ◽  
Author(s):  
Randi Azmi ◽  
Wisnu Tantyo Hadmojo ◽  
Septy Sinaga ◽  
Chang-Lyoul Lee ◽  
Sung Cheol Yoon ◽  
...  

2018 ◽  
Vol 3 (6) ◽  
pp. 1241-1246 ◽  
Author(s):  
Randi Azmi ◽  
Sunbin Hwang ◽  
Wenping Yin ◽  
Tae-Wook Kim ◽  
Tae Kyu Ahn ◽  
...  

2020 ◽  
Vol 8 (10) ◽  
pp. 5308-5314 ◽  
Author(s):  
Xia Yang ◽  
Hanjun Yang ◽  
Xiaotian Hu ◽  
Wenting Li ◽  
Zhimin Fang ◽  
...  

High-efficiency flexible CsPbI2Br PSCs are designed by introducing Al-doped ZnO as an electron-transport layer and tert-butyl cyanoacetate as a hole passivation layer. The optimized PSC exhibits outstanding stability and a champion PCE of 15.08%.


2020 ◽  
Vol 330 ◽  
pp. 135325 ◽  
Author(s):  
Weidong Zhu ◽  
Wenming Chai ◽  
Minyu Deng ◽  
Dandan Chen ◽  
Dazheng Chen ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1676
Author(s):  
Md. Shahiduzzaman ◽  
Daiki Kuwahara ◽  
Masahiro Nakano ◽  
Makoto Karakawa ◽  
Kohshin Takahashi ◽  
...  

The most frequently used n-type electron transport layer (ETL) in high-efficiency perovskite solar cells (PSCs) is based on titanium oxide (TiO2) films, involving a high-temperature sintering (>450 °C) process. In this work, a dense, uniform, and pinhole-free compact titanium dioxide (TiOx) film was prepared via a facile chemical bath deposition process at a low temperature (80 °C), and was applied as a high-quality ETL for efficient planar PSCs. We tested and compared as-deposited substrates sintered at low temperatures (< 150 °C) and high temperatures (> 450 °C), as well as their corresponding photovoltaic properties. PSCs with a high-temperature treated TiO2 compact layer (CL) exhibited power conversion efficiencies (PCEs) as high as 15.50%, which was close to those of PSCs with low-temperature treated TiOx (14.51%). This indicates that low-temperature treated TiOx can be a potential ETL candidate for planar PSCs. In summary, this work reports on the fabrication of low-temperature processed PSCs, and can be of interest for the design and fabrication of future low-cost and flexible solar modules.


Sign in / Sign up

Export Citation Format

Share Document