Low-temperature interfacial engineering for flexible CsPbI2Br perovskite solar cells with high performance beyond 15%

2020 ◽  
Vol 8 (10) ◽  
pp. 5308-5314 ◽  
Author(s):  
Xia Yang ◽  
Hanjun Yang ◽  
Xiaotian Hu ◽  
Wenting Li ◽  
Zhimin Fang ◽  
...  

High-efficiency flexible CsPbI2Br PSCs are designed by introducing Al-doped ZnO as an electron-transport layer and tert-butyl cyanoacetate as a hole passivation layer. The optimized PSC exhibits outstanding stability and a champion PCE of 15.08%.

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1676
Author(s):  
Md. Shahiduzzaman ◽  
Daiki Kuwahara ◽  
Masahiro Nakano ◽  
Makoto Karakawa ◽  
Kohshin Takahashi ◽  
...  

The most frequently used n-type electron transport layer (ETL) in high-efficiency perovskite solar cells (PSCs) is based on titanium oxide (TiO2) films, involving a high-temperature sintering (>450 °C) process. In this work, a dense, uniform, and pinhole-free compact titanium dioxide (TiOx) film was prepared via a facile chemical bath deposition process at a low temperature (80 °C), and was applied as a high-quality ETL for efficient planar PSCs. We tested and compared as-deposited substrates sintered at low temperatures (< 150 °C) and high temperatures (> 450 °C), as well as their corresponding photovoltaic properties. PSCs with a high-temperature treated TiO2 compact layer (CL) exhibited power conversion efficiencies (PCEs) as high as 15.50%, which was close to those of PSCs with low-temperature treated TiOx (14.51%). This indicates that low-temperature treated TiOx can be a potential ETL candidate for planar PSCs. In summary, this work reports on the fabrication of low-temperature processed PSCs, and can be of interest for the design and fabrication of future low-cost and flexible solar modules.


2020 ◽  
Author(s):  
Miao Yu ◽  
Haoxuan Sun ◽  
Xiaona Huang ◽  
Yichao Yan ◽  
Wanli Zhang

Abstract Recently, reported perovskite solar cells (PSCs) with high power conversion efficiency (PCE) are mostly based on mesoporous structures containing mesoporous titanium oxide (TiO 2 ) which is the main factor to reduce the overall hysteresis. However, existing fabrication approaches for mesoporous TiO 2 generally require a high temperature (>450 °C) annealing process. Moreover, there is still plenty of scope for improvement in terms of increasing the electron conductivity and reducing the carrier recombination. Herein, a facile one-step, in situ and low-temperature method was developed to prepare an Nb:TiO 2 compact-mesoporous layer to serve as both a scaffold and an electron transport layer (ETL) in PSCs. The Nb:TiO 2 compact-mesoporous layer based PSCs exhibit suppressed hysteresis, which is attributed to the synergistic effect of the large interface surface area caused by nano-pin morphology on the surface and the improved carrier transportation caused by the presence of Nb. Such a high-quality compact-mesoporous layer allows the PSC achieve a remarkable PCE of 19.74%. This work promises an effective approach for creating hysteresis-less and high-efficiency PSCs based on compact-mesoporous structures with lower energy consumption and cost.


Solar RRL ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 2000090 ◽  
Author(s):  
Jiawu Tian ◽  
Jianjun Zhang ◽  
Xiaohe Li ◽  
Bei Cheng ◽  
Jiaguo Yu ◽  
...  

2020 ◽  
Vol 1 (4) ◽  
pp. 617-624 ◽  
Author(s):  
Meiying Zhang ◽  
Fengmin Wu ◽  
Dan Chi ◽  
Keli Shi ◽  
Shihua Huang

Hybrid organic–inorganic perovskites have attracted intensive attention as the absorber layer in high-performance perovskite solar cells (PSCs).


2016 ◽  
Vol 4 (17) ◽  
pp. 6521-6526 ◽  
Author(s):  
Xiao Chen ◽  
Li Juan Tang ◽  
Shuang Yang ◽  
Yu Hou ◽  
Hua Gui Yang

A low-temperature processed flower-like TiO2 array layer was prepared and utilized as ETL in perovskite solar cells, leading to an enhanced power conversion efficiency (15.71 %) than that of traditional mesoporous TiO2 layer based devices (13.25 %) with less hysteresis.


2017 ◽  
Vol 5 (4) ◽  
pp. 1706-1712 ◽  
Author(s):  
Xin Wang ◽  
Lin-Long Deng ◽  
Lu-Yao Wang ◽  
Si-Min Dai ◽  
Zhou Xing ◽  
...  

Low-temperature, solution-processed cerium oxide can serve as a promising electron transport layer to replace commonly used TiO2 in planar perovskite solar cells, with high efficiency and enhanced stability.


2020 ◽  
Vol 12 (13) ◽  
pp. 15175-15182
Author(s):  
Yoshitaka Sanehira ◽  
Naoyuki Shibayama ◽  
Youhei Numata ◽  
Masashi Ikegami ◽  
Tsutomu Miyasaka

Sign in / Sign up

Export Citation Format

Share Document