Molecular Origin of Wettability Alteration of Subsurface Porous Media upon Gas Pressure Variations

Author(s):  
Tuan A. Ho ◽  
Yifeng Wang
2000 ◽  
Vol 3 (02) ◽  
pp. 139-149 ◽  
Author(s):  
Li Kewen ◽  
Firoozabadi Abbas

Summary In a recent theoretical study, Li and Firoozabadi [Li, K. and Firoozabadi, A.: "Phenomenological Modeling of Critical-Condensate Saturation and Relative Permeabilities in Gas-Condensate Systems," paper SPE 56014 available from SPE, Richardson, Texas (2000)] showed that if the wettability of porous media can be altered from preferential liquid-wetting to preferential gas-wetting, then gas-well deliverability in gas-condensate reservoirs can be increased. In this article, we present the results that the wettability of porous media may indeed be altered from preferential liquid-wetting to preferential gas-wetting. In the petroleum literature, it is often assumed that the contact angle through liquid-phase ? is equal to 0° for gas-liquid systems in rocks. As this work will show, while ? is always small, it may not always be zero. In laboratory experiments, we altered the wettability of porous media to preferential gas-wetting by using two chemicals, FC754 and FC722. Results show that in the glass capillary tube ? can be altered from about 50 to 90° and from 0 to 60° by FC754 for water-air and normal decane-air systems, respectively. While untreated Berea saturated with air has a 60% imbibition of water, its imbibition of water after chemical treatment is almost zero and its imbibition of normal decane is substantially reduced. FC722 has a more pronounced effect on the wettability alteration to preferential gas-wetting. In a glass capillary tube ? is altered from 50 to 120° and from 0 to 60° for water-air and normal decane-air systems, respectively. Similarly, because of wettability alteration with FC722, there is no imbibition of either oil or water in both Berea and chalk samples with or without initial brine saturation. Entry capillary pressure measurements in Berea and chalk give a clear demonstration that the wettability of porous media can be permanently altered to preferential gas-wetting. Introduction In a theoretical work,1 we have modeled gas and liquid relative permeabilities for gas-condensate systems in a simple network. The results imply that when one alters the wettability of porous media from strongly non-gas-wetting to preferential gas-wetting or intermediate gas-wetting, there may be a substantial increase in gas-well deliverability. The increase in gas-well deliverability of gas-condensate reservoirs is our main motivation for altering the wettability of porous media to preferential gas-wetting. Certain gas-condensate reservoirs experience a sharp drop in gas-well deliverability when the reservoir pressure drops below the dewpoint.2–4 Examples include many rich gas-condensate reservoirs that have a permeability of less than 100 md. In these reservoirs, it seems that the viscous forces alone cannot enhance gas-well deliverability. One may suggest removing liquid around the wellbore via phase-behavior effects through CO2 and propane injection. Both have been tried in the field with limited success; the effect of fluid injection around the wellbore for the removal of the condensate liquid is temporary. Wettability alteration can be a very important method for the enhancement of gas-well deliverability. If one can alter the wettability of the wellbore region to intermediate gas-wetting, gas may flow efficiently in porous media. As early as 1941, Buckley and Leverett5 recognized the importance of wettability on water flooding performance. Later, many authors studied the effect of wettability on capillary pressure, relative permeability, initial water saturation, residual oil saturation, oil recovery, electrical properties of reservoir rocks, reserves, and well stimulation.6–16 reported that it might be possible to improve oil displacement efficiency by wettability adjustment during water flooding. In 1967, Froning and Leach8 reported a field test in Clearfork and Gallup reservoirs for improving oil recovery by wettability alteration. Kamath9 then reviewed wettability detergent flooding. He noted that it was difficult to draw a definite conclusion regarding the success of detergent floods from the data available in the literature. Penny et al.12 presented a technique to improve well stimulation by changing the wettability for gas-water-rock systems. They added a surfactant in the fracturing fluid. This yielded impressive results; the production following cleanup after fracturing in gas wells generally was 2 to 3 times greater than field averages or offset wells treated with conventional techniques. Penny et al.12 believed that increased production was due to wettability alteration. However, they did not demonstrate that wettability had been altered. Recently, Wardlaw and McKellar17 reported that only 11% pore volume (PV) water imbibed into the Devonian dolomite samples with bitumen. The water imbibition test was conducted vertically in a dry core (saturated with air). Based on the imbibition experiments, they pointed out that many gas reservoirs in the western Alberta foothills of the Rocky Mountains were partially dehydrated and their wettability altered to a weakly water-wet or strongly oil-wet condition due to bitumen deposits on the pores. The water imbibition results of Wardlaw and McKellar17 demonstrated that the inappropriate hypothesis for wetting properties of gas reservoirs might lead to underestimation of hydrocarbon reserves.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1092-1107 ◽  
Author(s):  
M.. Tagavifar ◽  
M.. Balhoff ◽  
K.. Mohanty ◽  
G. A. Pope

Summary Surfactants induce spontaneous imbibition of water into oil-wet porous media by wettability alteration and interfacial-tension (IFT) reduction. Although the dependence of imbibition on wettability alteration is well-understood, the role of IFT is not as clear. This is partly because, at low IFT values, most water/oil/amphiphile(s) mixtures form emulsions and/or microemulsions, suggesting that the imbibition is accompanied by a phase change, which has been neglected or incorrectly accounted for in previous studies. In this paper, spontaneous displacement of oil from oil-wet porous media by microemulsion-forming surfactants is investigated through simulations and the results are compared with existing experimental data for low-permeability cores with different aspect ratios and permeabilities. Microemulsion viscosity and oil contact angles, with and without surfactant, were measured to better initialize and constrain the simulation model. Results show that with such processes, the imbibition rate and the oil recovery scale differently with core dimensions. Specifically, the rate of imbibition is faster in cores with larger diameter and height, but the recovery factor is smaller when the core aspect ratio deviates considerably from unity. With regard to the mechanism of water uptake, our results suggest, for the first time, that (i) microemulsion formation (i.e., fluid/fluid interface phenomenon) is fast and favored over the wettability alteration (i.e., rock-surface phenomenon) in short times; (ii) a complete wettability transition from an oil-wet to a mixed microemulsion-wet and surfactant-wet state always occurs at ultralow IFT; (iii) wettability alteration causes a more uniform imbibition profile along the core but creates a more diffused imbibition front; and (iv) total emulsification is a strong assumption and fails to describe the dynamics and the scaling of imbibition. Wettability alteration affects the imbibition dynamics locally by changing the composition path, and at a distance by changing the flow behavior. Simulations predict that even though water is not initially present, it forms inside the core. The implications of these results for optimizing the design of low-IFT imbibition are discussed.


2020 ◽  
Vol 400 ◽  
pp. 38-44
Author(s):  
Hassan Soleimani ◽  
Hassan Ali ◽  
Noorhana Yahya ◽  
Beh Hoe Guan ◽  
Maziyar Sabet ◽  
...  

This article studies the combined effect of spatial heterogeneity and capillary pressure on the saturation of two fluids during the injection of immiscible nanoparticles. Various literature review exhibited that the nanoparticles are helpful in enhancing the oil recovery by varying several mechanisms, like wettability alteration, interfacial tension, disjoining pressure and mobility control. Multiphase modelling of fluids in porous media comprise balance equation formulation, and constitutive relations for both interphase mass transfer and pressure saturation curves. A classical equation of advection-dispersion is normally used to simulate the fluid flow in porous media, but this equation is unable to simulate nanoparticles flow due to the adsorption effect which happens. Several modifications on computational fluid dynamics (CFD) have been made to increase the number of unknown variables. The simulation results indicated the successful transportation of nanoparticles in two phase fluid flow in porous medium which helps in decreasing the wettability of rocks and hence increasing the oil recovery. The saturation, permeability and capillary pressure curves show that the wettability of the rocks increases with the increasing saturation of wetting phase (brine).


2020 ◽  
pp. 367-372
Author(s):  
J. Chastanet ◽  
P. Royer ◽  
J.L. Auriault
Keyword(s):  
Gas Flow ◽  

Author(s):  
Mehrdad Sepehri ◽  
Babak Moradi ◽  
Abolghasem Emamzadeh ◽  
Amir H. Mohammadi

Nowadays, nanotechnology has become a very attractive subject in Enhanced Oil Recovery (EOR) researches. In the current study, a carbonate system has been selected and first the effects of nanoparticles on the rock and fluid properties have been experimentally investigated and then the simulation and numerical modeling of the nanofluid injection for enhanced oil recovery process have been studied. After nanofluid treatment, experimental results have shown wettability alteration. A two-phase flow mathematical model and a numerical simulator considering wettability alteration have been developed. The numerical simulation results show that wettability alteration from oil-wet to water-wet due to presence of nanoparticles can lead to 8–10% increase in recovery factor in comparison with normal water flooding. Different sensitivity analyses and injection scenarios have been considered and assessed. Using numerical modeling, wettability alteration process and formation damage caused by entrainment and entrapment of nanoparticles in porous media have been proved. Finally, the net rate of nanoparticles’ loss in porous media has been investigated.


2022 ◽  
Vol 345 ◽  
pp. 118128
Author(s):  
Jaber Taheri-Shakib ◽  
Mahyar Rajabi-Kochi ◽  
Akram Shabani ◽  
Ali Esfandiarian ◽  
Mohammad Afkhami Karaei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document