Polydopamine-Decorated Microcomposites Promote Functional Recovery of an Injured Spinal Cord by Inhibiting Neuroinflammation

Author(s):  
Guangfei Wei ◽  
Dongdong Jiang ◽  
Shuai Hu ◽  
Zhiyuan Yang ◽  
Zifan Zhang ◽  
...  
2020 ◽  
Vol 34 (5) ◽  
pp. 6984-6998
Author(s):  
Ningning Chen ◽  
Pengxiang Zhou ◽  
Xizhe Liu ◽  
Jiachun Li ◽  
Yong Wan ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1582 ◽  
Author(s):  
Takehiro Sugaya ◽  
Haruo Kanno ◽  
Michiharu Matsuda ◽  
Kyoichi Handa ◽  
Satoshi Tateda ◽  
...  

The receptor-interacting protein kinase 3 (RIPK3) is a key regulator of necroptosis and is involved in various pathologies of human diseases. We previously reported that RIPK3 expression is upregulated in various neural cells at the lesions and necroptosis contributed to secondary neural tissue damage after spinal cord injury (SCI). Interestingly, recent studies have shown that the B-RAFV600E inhibitor dabrafenib has a function to selectively inhibit RIPK3 and prevents necroptosis in various disease models. In the present study, using a mouse model of thoracic spinal cord contusion injury, we demonstrate that dabrafenib administration in the acute phase significantly inhibites RIPK3-mediated necroptosis in the injured spinal cord. The administration of dabrafenib attenuated secondary neural tissue damage, such as demyelination, neuronal loss, and axonal damage, following SCI. Importantly, the neuroprotective effect of dabrafenib dramatically improved the recovery of locomotor and sensory functions after SCI. Furthermore, the electrophysiological assessment of the injured spinal cord objectively confirmed that the functional recovery was enhanced by dabrafenib. These findings suggest that the B-RAFV600E inhibitor dabrafenib attenuates RIPK3-mediated necroptosis to provide a neuroprotective effect and promotes functional recovery after SCI. The administration of dabrafenib may be a novel therapeutic strategy for treating patients with SCI in the future.


2006 ◽  
Vol 12 (12) ◽  
pp. 1380-1389 ◽  
Author(s):  
Shinjiro Kaneko ◽  
Akio Iwanami ◽  
Masaya Nakamura ◽  
Akiyoshi Kishino ◽  
Kaoru Kikuchi ◽  
...  

1980 ◽  
Vol 53 (3) ◽  
pp. 381-384 ◽  
Author(s):  
Charles H. Tator ◽  
Richard H. C. van der Jagt

✓ The effect of triiodothyronine (T3) or thyroxine (T4) on functional recovery after acute spinal cord compression injury in the rat was assessed. Rats treated with T3 for 14 consecutive days after injury showed significantly improved recovery at 12 and 16 weeks, and rats treated with T4 for 4 days after injury showed significantly improved recovery at 12 weeks as compared with control animals. The possible modes of action of these two hormones on the injured spinal cord are briefly discussed.


2015 ◽  
Vol 26 (2) ◽  
Author(s):  
Haruo Kanno ◽  
Damien D. Pearse ◽  
Hiroshi Ozawa ◽  
Eiji Itoi ◽  
Mary Bartlett Bunge

AbstractTransplantation of Schwann cells (SCs) is a promising therapeutic strategy for spinal cord repair. The introduction of SCs into the injured spinal cord has been shown to reduce tissue loss, promote axonal regeneration, and facilitate myelination of axons for improved sensorimotor function. The pathology of spinal cord injury (SCI) comprises multiple processes characterized by extensive cell death, development of a milieu inhibitory to growth, and glial scar formation, which together limits axonal regeneration. Many studies have suggested that significant functional recovery following SCI will not be possible with a single therapeutic strategy. The use of additional approaches with SC transplantation may be needed for successful axonal regeneration and sufficient functional recovery after SCI. An example of such a combination strategy with SC transplantation has been the complementary administration of neuroprotective agents/growth factors, which improves the effect of SCs after SCI. Suspension of SCs in bioactive matrices can also enhance transplanted SC survival and increase their capacity for supporting axonal regeneration in the injured spinal cord. Inhibition of glial scar formation produces a more permissive interface between the SC transplant and host spinal cord for axonal growth. Co-transplantation of SCs and other types of cells such as olfactory ensheathing cells, bone marrow mesenchymal stromal cells, and neural stem cells can be a more effective therapy than transplantation of SCs alone following SCI. This article reviews some of the evidence supporting the combination of SC transplantation with additional strategies for SCI repair and presents a prospectus for achieving better outcomes for persons with SCI.


Sign in / Sign up

Export Citation Format

Share Document