Se/Ru-Decorated Porous Metal–Organic Framework Nanoparticles for The Delivery of Pooled siRNAs to Reversing Multidrug Resistance in Taxol-Resistant Breast Cancer Cells

2017 ◽  
Vol 9 (8) ◽  
pp. 6712-6724 ◽  
Author(s):  
Qingchang Chen ◽  
Meng Xu ◽  
Wenjing Zheng ◽  
Taoyuan Xu ◽  
Hong Deng ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 6919-6926
Author(s):  
Jiahui Liu ◽  
Menghuan Tang ◽  
Yanghao Zhou ◽  
Yijuan Long ◽  
Yuan Cheng ◽  
...  

ZIF-8@Sira/FA induces the cancer cells apoptosis and then eliminates cancer cells from the inside through the lysosomal death pathway.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Fatemeh Mokhtarian ◽  
Banafsheh Rastegari ◽  
Sedigheh Zeinali ◽  
Maryam Tohidi ◽  
Hamid Reza Karbalaei-Heidari

The metal organic framework (MOF) member, MIL-100(Fe), is considered as attractive drug nanocarrier that may be due to the great porosity, colloidal stability, and biocompatibility. In the present study, the new electrochemical synthesis procedure was presented for MIL-100(Fe) building block, and secondly, folic acid (FA) was introduced to the structure for assessing its potential targeted ability to be entrapped by folic acid-positive breast cancer cells, MCF-7. Several techniques such as SEM, XRD, and FT-IR were used to characterize synthesized nanostructures. Both MIL-100(Fe) and MIL-100(Fe)/FA nanoparticles were between 50 to 200 nm with a slightly positive net charge with an area of 1350 and 831.84 m2/g, respectively. The prodigiosin (PG) is selected as a model drug for MIL-100(Fe) and MIL-100(Fe)/FA-targeted delivery owing to its natural fluorescence and cancer cell selectiveness. The loading capacity of both nanocarrier was around 40% with 93-97% loading efficacy. Moreover, the pH-sensitive prodigiosin release rate of MIL-100(Fe)@PG and MIL-100(Fe)/FA@PG showed that 69 to 73% of the drug was released after 24 hours in an acidic environment with around 20% unwanted leakage. The anticancer potential MIL-100(Fe)/FA cells showed the improvement of selective index (SI) from 3.21 to 12.48 which means that folic acid acts as an effective ligand. The study of cells treated with fluorescence microscopy and flow cytometry analysis reveals the dependence of the receptor on the nanoparticle through endocytosis. Considering the effects of nanoparticles on healthy cells, MIL-100(Fe) and MIL-100(Fe)/FA nanoparticles can be introduced as targeted drug delivery systems for smart targeting breast cancer cells with minimal side effects.


2021 ◽  
Vol 143 (3) ◽  
pp. 1365-1376
Author(s):  
Sérgio M. F. Vilela ◽  
Jorge A. R. Navarro ◽  
Paula Barbosa ◽  
Ricardo F. Mendes ◽  
Germán Pérez-Sánchez ◽  
...  

2014 ◽  
Vol 50 (14) ◽  
pp. 1678-1681 ◽  
Author(s):  
Jinjie Qian ◽  
Feilong Jiang ◽  
Linjie Zhang ◽  
Kongzhao Su ◽  
Jie Pan ◽  
...  

A highly porous metal–organic framework structurally consists of three topological kinds of 3-connected 1,3,5-benzenetricarboxylate ligands, Zn2(COO)4, Zn3O(COO)6 and Zn4O(COO)6 SBUs, featuring a new 3,3,3,4,4,6-c hexanodal topology.


2010 ◽  
Vol 49 (21) ◽  
pp. 9852-9862 ◽  
Author(s):  
Christophe Volkringer ◽  
Thierry Loiseau ◽  
Nathalie Guillou ◽  
Gérard Férey ◽  
Mohamed Haouas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document