One-Step Transformation of Metal Meshes to Robust Superhydrophobic and Superoleophilic Meshes for Highly Efficient Oil Spill Cleanup and Oil/Water Separation

2019 ◽  
Vol 12 (1) ◽  
pp. 1850-1857 ◽  
Author(s):  
Chao Fu ◽  
Lin Gu ◽  
Zhixiang Zeng ◽  
Qunji Xue
Nanoscale ◽  
2022 ◽  
Author(s):  
Haiyang Yu ◽  
Min Wu ◽  
Gaigai Duan ◽  
Xiao Gong

Oily wastewater and oil spill caused by oil leakage accidents pose an extremely harmful to human health and environment. Thus, it is very important to exploit superhydrophobic separation materials and...


RSC Advances ◽  
2016 ◽  
Vol 6 (48) ◽  
pp. 41861-41870 ◽  
Author(s):  
Wenjing Ma ◽  
Qilu Zhang ◽  
Sangram Keshari Samal ◽  
Fang Wang ◽  
Buhong Gao ◽  
...  

In recent years, both the increasing frequency of oil spill accidents and the urgency to deal seriously with industrial oil-polluted water, encouraged material scientists to design highly efficient, cost effective oil–water separation technologies.


2014 ◽  
Vol 41 (11) ◽  
pp. 8019-8029 ◽  
Author(s):  
Shan Shi ◽  
M. S. Sadullah ◽  
M. A. Gondal ◽  
Yihe Sui ◽  
Suqiao Liu ◽  
...  

2020 ◽  
Vol 7 (3) ◽  
pp. 903-911 ◽  
Author(s):  
Lei Zhu ◽  
Hui Li ◽  
Yingying Yin ◽  
Zhaozhen Cui ◽  
Chao Ma ◽  
...  

It is of great significance to develop novel superhydrophilic/underwater superoleophobic materials using a facile and simple method for efficiently separating oily wastewater.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Salma Elhenawy ◽  
Majeda Khraisheh ◽  
Fares AlMomani ◽  
Mohammad K. Hassan ◽  
Mohammad A. Al-Ghouti ◽  
...  

The vast demand for petroleum industry products led to the increased production of oily wastewaters and has led to many possible separation technologies. In addition to production-related oily wastewater, direct oil spills are associated with detrimental effects on the local ecosystems. Accordingly, this review paper aims to tackle the oil spill cleanup issue as well as water separation by providing a wide range of graphene-based technologies. These include graphene-based membranes; graphene sponges; graphene-decorated meshes; graphene hydrogels; graphene aerogels; graphene foam; and graphene-coated cotton. Sponges and aerogels modified by graphene and reduced graphene oxide demonstrated effective oil water separation owing to their superhydrophobic/superoleophilic properties. In addition, oil particles are intercepted while allowing water molecules to penetrate the graphene-oxide-coated metal meshes and membranes thanks to their superhydrophilic/underwater superoleophobic properties. Finally, we offer future perspectives on oil water separation that are hindering the advancements of such technologies and their large-scale applications.


Sign in / Sign up

Export Citation Format

Share Document