Controlling Ionomer Film Morphology through Altering Pt Catalyst Surface Properties for Polymer Electrolyte Membrane Fuel Cells

2020 ◽  
Vol 2 (5) ◽  
pp. 1807-1818 ◽  
Author(s):  
Ji Hye Lee ◽  
Gisu Doo ◽  
Sung Hyun Kwon ◽  
Haisu Kang ◽  
Sungyu Choi ◽  
...  
2017 ◽  
Vol 4 (5) ◽  
pp. 895-899 ◽  
Author(s):  
Mo Qiao ◽  
Cheng Tang ◽  
Liviu Cristian Tanase ◽  
Cristian Mihail Teodorescu ◽  
Chengmeng Chen ◽  
...  

We propose a novel idea to improve the surface properties of carbon-based Pt-free electrocatalysts in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) and Alkaline Fuel Cells (AFCs).


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Won-Suk Jung

Since the reaction rate and cost for cathodic catalyst in polymer electrolyte membrane fuel cells are obstacles for commercialization, the high-performance catalyst for oxygen reduction reaction is necessary. The Ni encapsulated with N-doped graphitic carbon (Ni@NGC) prepared with ethylenediamine and carbon black is employed as an efficient support for the oxygen reduction reaction. Characterizations show that the Ni@NGC has a large surface area and mesoporous structure that is suitable to the support for the Pt catalyst. The catalyst structure is identified and the size of Pt nanoparticles distributed in the narrow range of 2–3 nm. Four different nitrogen species are doped properly into graphitic carbon structure. The Pt/Ni@NGC shows higher performance than the commercial Pt/C catalyst in an acidic electrolyte. The mass activity of the Pt/Ni@NGC in fuel cell tests exhibits over 1.5 times higher than that of commercial Pt/C catalyst. The Pt/Ni@NGC catalyst at low Pt loading exhibits 47% higher maximum power density than the Pt/C catalyst under H2-air atmosphere. These results indicate that the Ni@NGC as a support is significantly beneficial to improving activity.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 728
Author(s):  
Leong Kok Seng ◽  
Mohd Shahbudin Masdar ◽  
Loh Kee Shyuan

Increasing world energy demand and the rapid depletion of fossil fuels has initiated explorations for sustainable and green energy sources. High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) are viewed as promising materials in fuel cell technology due to several advantages, namely improved kinetic of both electrodes, higher tolerance for carbon monoxide (CO) and low crossover and wastage. Recent technology developments showed phosphoric acid-doped polybenzimidazole (PA-PBI) membranes most suitable for the production of polymer electrolyte membrane fuel cells (PEMFCs). However, drawbacks caused by leaching and condensation on the phosphate groups hindered the application of the PA-PBI membranes. By phosphate anion adsorption on Pt catalyst layers, a higher volume of liquid phosphoric acid on the electrolyte–electrode interface and within the electrodes inhibits or even stops gas movement and impedes electron reactions as the phosphoric acid level grows. Therefore, doping techniques have been extensively explored, and recently ionic liquids (ILs) were introduced as new doping materials to prepare the PA-PBI membranes. Hence, this paper provides a review on the use of ionic liquid material in PA-PBI membranes for HT-PEMFC applications. The effect of the ionic liquid preparation technique on PA-PBI membranes will be highlighted and discussed on the basis of its characterization and performance in HT-PEMFC applications.


2010 ◽  
Vol 195 (15) ◽  
pp. 4622-4627 ◽  
Author(s):  
Tommy T.H. Cheng ◽  
Nengyou Jia ◽  
Vesna Colbow ◽  
Silvia Wessel ◽  
Monica Dutta

Sign in / Sign up

Export Citation Format

Share Document