Ion-Depleting Action of Perm-Selective Membranes for Enhancing Electrical Communication and Gated Ion Channel Activity in Cell Cultures

Author(s):  
Vivek Yadav ◽  
Satyajyoti Senapati ◽  
Hsueh-Chia Chang
Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
A Vasas ◽  
P Orvos ◽  
L Tálosi ◽  
P Forgo ◽  
G Pinke ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiankun Hui ◽  
Hongyang Jing ◽  
Xinsheng Lai

Abstract Background Neuromuscular junctions (NMJs) are chemical synapses formed between motor neurons and skeletal muscle fibers and are essential for controlling muscle contraction. NMJ dysfunction causes motor disorders, muscle wasting, and even breathing difficulties. Increasing evidence suggests that many NMJ disorders are closely related to alterations in specific gene products that are highly concentrated in the synaptic region of the muscle. However, many of these proteins are still undiscovered. Thus, screening for NMJ-specific proteins is essential for studying NMJ and the pathogenesis of NMJ diseases. Results In this study, synaptic regions (SRs) and nonsynaptic regions (NSRs) of diaphragm samples from newborn (P0) and adult (3-month-old) mice were used for RNA-seq. A total of 92 and 182 genes were identified as differentially expressed between the SR and NSR in newborn and adult mice, respectively. Meanwhile, a total of 1563 genes were identified as differentially expressed between the newborn SR and adult SR. Gene Ontology (GO) enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) of the DEGs were performed. Protein–protein interaction (PPI) networks were constructed using STRING and Cytoscape. Further analysis identified some novel proteins and pathways that may be important for NMJ development, maintenance and maturation. Specifically, Sv2b, Ptgir, Gabrb3, P2rx3, Dlgap1 and Rims1 may play roles in NMJ development. Hcn1 may localize to the muscle membrane to regulate NMJ maintenance. Trim63, Fbxo32 and several Asb family proteins may regulate muscle developmental-related processes. Conclusion Here, we present a complete dataset describing the spatiotemporal transcriptome changes in synaptic genes and important synaptic pathways. The neuronal projection-related pathway, ion channel activity and neuroactive ligand-receptor interaction pathway are important for NMJ development. The myelination and voltage-gated ion channel activity pathway may be important for NMJ maintenance. These data will facilitate the understanding of the molecular mechanisms underlying the development and maintenance of NMJ and the pathogenesis of NMJ disorders.


ChemInform ◽  
2010 ◽  
Vol 28 (9) ◽  
pp. no-no
Author(s):  
H. WAGNER ◽  
K. HARMS ◽  
U. KOERT ◽  
S. MEDER ◽  
G. BOHEIM

2021 ◽  
Author(s):  
Robert Stewart ◽  
Bruce E. Cohen ◽  
Jon T. Sack

2014 ◽  
Vol 10 (5) ◽  
pp. e1004077 ◽  
Author(s):  
Jose L. Nieto-Torres ◽  
Marta L. DeDiego ◽  
Carmina Verdiá-Báguena ◽  
Jose M. Jimenez-Guardeño ◽  
Jose A. Regla-Nava ◽  
...  

2011 ◽  
Vol 26 (5) ◽  
pp. 2376-2382 ◽  
Author(s):  
Oliver Pänke ◽  
Winnie Weigel ◽  
Sabine Schmidt ◽  
Anja Steude ◽  
Andrea A. Robitzki

2006 ◽  
Vol 1758 (4) ◽  
pp. 493-498 ◽  
Author(s):  
Yuri N. Antonenko ◽  
Tatyana B. Stoilova ◽  
Sergey I. Kovalchuk ◽  
Natalya S. Egorova ◽  
Alina A. Pashkovskaya ◽  
...  

2003 ◽  
Vol 2 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Stephen K. Roberts

ABSTRACT In contrast to animal and plant cells, very little is known of ion channel function in fungal physiology. The life cycle of most fungi depends on the “filamentous” polarized growth of hyphal cells; however, no ion channels have been cloned from filamentous fungi and comparatively few preliminary recordings of ion channel activity have been made. In an attempt to gain an insight into the role of ion channels in fungal hyphal physiology, a homolog of the yeast K+ channel (ScTOK1) was cloned from the filamentous fungus, Neurospora crassa. The patch clamp technique was used to investigate the biophysical properties of the N. crassa K+ channel (NcTOKA) after heterologous expression of NcTOKA in yeast. NcTOKA mediated mainly time-dependent outward whole-cell currents, and the reversal potential of these currents indicated that it conducted K+ efflux. NcTOKA channel gating was sensitive to extracellular K+ such that channel activation was dependent on the reversal potential for K+. However, expression of NcTOKA was able to overcome the K+ auxotrophy of a yeast mutant missing the K+ uptake transporters TRK1 and TRK2, suggesting that NcTOKA also mediated K+ influx. Consistent with this, close inspection of NcTOKA-mediated currents revealed small inward K+ currents at potentials negative of EK. NcTOKA single-channel activity was characterized by rapid flickering between the open and closed states with a unitary conductance of 16 pS. NcTOKA was effectively blocked by extracellular Ca2+, verapamil, quinine, and TEA+ but was insensitive to Cs+, 4-aminopyridine, and glibenclamide. The physiological significance of NcTOKA is discussed in the context of its biophysical properties.


Gut ◽  
2016 ◽  
Vol 66 (4) ◽  
pp. 756-758 ◽  
Author(s):  
Soesma A Jankipersadsing ◽  
Fatemeh Hadizadeh ◽  
Marc Jan Bonder ◽  
Ettje F Tigchelaar ◽  
Patrick Deelen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document