virus fitness
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ravindra Gupta ◽  
Steven Kemp ◽  
William Harvey ◽  
Spyros Lytras ◽  
Alessandro Carabelli ◽  
...  

Abstract SARS-CoV-2 Spike amino acid replacements in the receptor binding domain (RBD) occur relatively frequently and some have a consequence for immune recognition. Here we report recurrent emergence and significant onward transmission of a six-nucleotide deletion in the S gene, which results in loss of two amino acids: H69 and V70. Of particular note this deletion, 𝚫H69/V70, often co-occurs with the receptor binding motif amino acid replacements N501Y, N439K and Y453F. One of the 𝚫H69/V70+ N501Y lineages, B.1.1.7, is comprised of over 4000 SARS-CoV-2 genome sequences from the UK and includes eight other S gene mutations: RBD (N501Y and A570D), S1 (𝚫H69/V70 and 𝚫144/145) and S2 (P681H, T716I, S982A and D1118H). Some of these mutations have presumably arisen as a result of the virus evolving from immune selection pressure in infected individuals and at least one, lineage B.1.1.7, potentially from a chronic infection. Given our recent evidence that 𝚫H69/V70 enhances viral infectivity (Kemp et al. 2020), its effect on virus fitness appears to be independent to the RBD changes. Enhanced surveillance for the 𝚫H69/V70 deletion with and without RBD mutations should be considered as a priority. Permissive mutations such as 𝚫H69/V70 have the potential to enhance the ability of SARS-CoV-2 to generate new variants, including vaccine escape variants, that would have otherwise significantly reduced viral fitness.


Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 666-678
Author(s):  
Marcel Gischke ◽  
Ola Bagato ◽  
Angele Breithaupt ◽  
David Scheibner ◽  
Claudia Blaurock ◽  
...  

Author(s):  
SA Kemp ◽  
WT Harvey ◽  
RP Datir ◽  
DA Collier ◽  
IATM Ferreira ◽  
...  

AbstractSARS-CoV-2 Spike amino acid replacements in the receptor binding domain (RBD) occur relatively frequently and some have a consequence for immune recognition. Here we report recurrent emergence and significant onward transmission of a six-nucleotide deletion in the S gene, which results in loss of two amino acids: H69 and V70. Of particular note this deletion, ΔH69/V70, often co-occurs with the receptor binding motif amino acid replacements N501Y, N439K and Y453F. One of the ΔH69/V70+ N501Y lineages, B.1.1.7, is comprised of over 1400 SARS-CoV-2 genome sequences from the UK and includes eight S gene mutations: RBD (N501Y and A570D), S1 (ΔH69/V70 and Δ144/145) and S2 (P681H, T716I, S982A and D1118H). Some of these mutations have possibly arisen as a result of the virus evolving from immune selection pressure in infected individuals and possibly only one chronic infection in the case of lineage B.1.1.7. We find the ΔH69/V70 enhances viral infectivity, indicating its effect on virus fitness is independent to the N501Y RBM change. Enhanced surveillance for the ΔH69/V70 deletion with and without RBD mutations should be considered as a priority. Such “permissive” mutations have the potential to enhance the ability of SARS-CoV-2 to generate vaccine escape variants that would have otherwise significantly reduced viral fitness.


2020 ◽  
Author(s):  
Sung-Su Youk ◽  
Christina M. Leyson ◽  
Brittany A. Seibert ◽  
Samadhan Jadhao ◽  
Daniel R. Perez ◽  
...  

The H5N8 highly pathogenic avian influenza (HPAI) clade 2.3.4.4 virus spread to North America by wild birds and reassorted to generate the H5N2 HPAI virus that caused the poultry outbreak in the United States in 2015. In previous studies, we showed that H5N2 viruses isolated from poultry in the later stages of the outbreak had higher infectivity and transmissibility in chickens than the wild bird index H5N2 virus. Here, we determined the genetic changes that contributed to the difference in host virus fitness by analyzing sequence data from all of the viruses detected during the H5N2 outbreak, and studying the pathogenicity of reassortant viruses generated with the index wild bird virus and a chicken virus from later in the outbreak. Viruses with the wild bird virus backbone and either PB1, NP, or the entire polymerase complex of the chicken isolate, caused higher and earlier mortality in chickens, with three mutations (PB1 E180D, M317V, and NP I109T) identified to increase polymerase activity in chicken cells. The reassortant virus with the HA and NA from the chicken virus, where mutations in functionally known gene regions were acquired as the virus circulated in turkeys (HA S141P and NA S416G) and later in chickens (HA M66I, L322Q), showed faster virus growth, bigger plaque size and enhanced heat persistence in vitro, and increased pathogenicity and transmissibility in chickens. Collectively, these findings demonstrate an evolutionary pathway in which a HPAI virus from wild birds can accumulate genetic changes to increase fitness in poultry. IMPORTANCE H5Nx highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 lineage continue to circulate widely affecting both poultry and wild birds. These viruses continue to change and reassort, which affects their fitness to different avian hosts. In this study, we defined mutations associated with increased virus fitness in chickens as the clade 2.3.4.4. H5N2 HPAI virus circulated in different avian species. We identified mutations in the PB1, NP, HA, and NA virus proteins that were highly conserved in the poultry isolates and contributed to the adaptation of this virus in chickens. This knowledge is important for understanding the epidemiology of H5Nx HPAI viruses and specifically the changes related to adaptation of these viruses in poultry.


2020 ◽  
Vol 8 (11) ◽  
pp. 1714
Author(s):  
Igor M. Rouzine

The time to the onset of AIDS symptoms in an HIV infected individual is known to correlate inversely with viremia and the level of immune activation. The correlation exists against the background of strong individual fluctuations demonstrating the existence of hidden variables depending on patient and virus parameters. At the moment, prognosis of the time to AIDS based on patient parameters is not possible. In addition, it is of paramount importance to understand the reason of progression to AIDS in untreated patients to be able to learn to control it by means other than anti-retroviral therapy. Here we develop a mechanistic mathematical model to predict the speed of progression to AIDS in individual untreated patients and patients treated with suboptimal therapy, based on a single-time measurement of several virological and immunological parameters. We show that the gradual increase in virus fitness during a chronic infection causes slow gradual depletion of CD4 T cells. Using the existing evolution models of HIV, we obtain general expressions predicting the time to the onset of AIDS symptoms in terms of the patient parameters, for low-viremia and high-viremia patients separately. We show that the evolution model of AIDS fits the existing data on virus-time correlations better than the alternative model of the deregulation of homeostatic response.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Amanda C Perofsky ◽  
Martha I Nelson

New measures of influenza virus fitness could improve vaccine strain selection through more accurate forecasts of the evolution of the virus.


2020 ◽  
Author(s):  
Maria E. Cilento ◽  
Eleftherios Michailidis ◽  
Tatiana V. Ilina ◽  
Eva Nagy ◽  
Hiroaki Mitsuya ◽  
...  

4’-ethynyl-2-fluoro-2’-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against WT and drug-resistant HIV strains. However, HIV resistance to EFdA is not well characterized. We therefore developed resistance to EFdA by serial passages using progressively increasing concentrations of EFdA. The starting virus was either WT or clinically relevant NRTI-resistant viruses K65R, M184V, and D67N/K70R/T215F/K219Q). In all cases, the selected mutations included M184V. Additional mutations in the RT connection domain (R358K and E399K) and one mutation in the RNase H domain (A502V) were noted. Site-specific mutagenesis validated the role for M184V as the primary determinant for resistance to EFdA; none of the connection domain mutations contributed significantly to phenotypic resistance to EFdA. A novel EFdA resistance mutation was also observed in the background of M184V. The A114S/M184V combination of mutations imparted higher resistance to EFdA (~24-fold) than M184V (−8-fold) or A114S (~2-fold) alone. Virus fitness data suggested that A114S affects HIV fitness by itself and in the presence of M184V. This is consistent with biochemical experiments that showed decreases in the enzymatic efficiency (kcat/Km) of WT RT vs. A114S (2.1-fold) and A114S/M184V/502V (6.5-fold), whereas there was no significant effect of A502V on RT or virus fitness. The observed EFdA resistance of M184V by itself and in combination with A114S combined with the strong published in vitro and in vivo data, confirm that EFdA is an excellent candidate as a potential HIV therapeutic.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1034 ◽  
Author(s):  
Martí Farrera-Sal ◽  
Cristina Fillat ◽  
Ramon Alemany

Clinical results with oncolytic adenoviruses (OAds) used as antitumor monotherapies show limited efficacy. To increase OAd potency, transgenes have been inserted into their genome, a strategy known as “arming OAds”. Here, we review different parameters that affect the outcome of armed OAds. Recombinant adenovirus used in gene therapy and vaccination have been the basis for the design of armed OAds. Hence, early region 1 (E1) and early region 3 (E3) have been the most commonly used transgene insertion sites, along with partially or complete E3 deletions. Besides transgene location and orientation, transcriptional control elements, transgene function, either virocentric or immunocentric, and even the codons encoding it, greatly impact on transgene levels and virus fitness.


2020 ◽  
Vol 21 (7) ◽  
pp. 2353
Author(s):  
Marcel Gischke ◽  
Reiner Ulrich ◽  
Olanrewaju I. Fatola ◽  
David Scheibner ◽  
Ahmed H. Salaheldin ◽  
...  

Highly pathogenic (HP) avian influenza viruses (AIVs) are naturally restricted to H5 and H7 subtypes with a polybasic cleavage site (CS) in hemagglutinin (HA) and any AIV with an intravenous pathogenicity index (IVPI) ≥ 1.2. Although only a few non-H5/H7 viruses fulfill the criteria of HPAIV; it remains unclear why these viruses did not spread in domestic birds. In 2012, a unique H4N2 virus with a polybasic CS 322PEKRRTR/G329 was isolated from quails in California which, however, was avirulent in chickens. This is the only known non-H5/H7 virus with four basic amino acids in the HACS. Here, we investigated the virulence of this virus in chickens after expansion of the polybasic CS by substitution of T327R (322PEKRRRR/G329) or T327K (322PEKRRKR/G329) with or without reassortment with HPAIV H5N1 and H7N7. The impact of single mutations or reassortment on virus fitness in vitro and in vivo was studied. Efficient cell culture replication of T327R/K carrying H4N2 viruses increased by treatment with trypsin, particularly in MDCK cells, and reassortment with HPAIV H5N1. Replication, virus excretion and bird-to-bird transmission of H4N2 was remarkably compromised by the CS mutations, but restored after reassortment with HPAIV H5N1, although not with HPAIV H7N7. Viruses carrying the H4-HA with or without R327 or K327 mutations and the other seven gene segments from HPAIV H5N1 exhibited high virulence and efficient transmission in chickens. Together, increasing the number of basic amino acids in the H4N2 HACS was detrimental for viral fitness particularly in vivo but compensated by reassortment with HPAIV H5N1. This may explain the absence of non-H5/H7 HPAIV in poultry.


Sign in / Sign up

Export Citation Format

Share Document