Elucidation of Active Sites of Gold Nanoparticles on Acidic Ta2O5 Supports for CO Oxidation

ACS Catalysis ◽  
2020 ◽  
Vol 10 (16) ◽  
pp. 9328-9335
Author(s):  
Mingyue Lin ◽  
Chihiro Mochizuki ◽  
Baoxiang An ◽  
Yusuke Inomata ◽  
Tamao Ishida ◽  
...  
Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 288 ◽  
Author(s):  
Nigora Turaeva ◽  
Herman Krueger

The Wolkenstein’s theory of catalysis and the d-band theory of formation chemical bonds between transition metal catalysts and adsorbates were used to develop the approach applied to the kinetics of CO oxidation by gold nanoparticles. In the model, within the framework of the mechanism of the reaction going through dissociative adsorption of oxygen molecules and reaction with gas-phase CO molecules, weak and strong chemisorption states of intermediates (O, CO2) were taken into account in the kinetic equations by introducing reversible electronic steps corresponding to electron transfers between the intermediates and the catalyst. As a result, we obtain the expression for the reaction rate, which exhibits a volcano-shape dependence upon the size of the gold nanoparticles at the conditions when the intermediates fractions are not small compared to the empty active sites of the catalyst. It is supposed that the approach can be also applied to the Langmuir-Hinshelwood mechanism.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1118 ◽  
Author(s):  
Qiuwan Han ◽  
Dongyang Zhang ◽  
Jiuli Guo ◽  
Baolin Zhu ◽  
Weiping Huang ◽  
...  

The gold catalysts supported on various morphologies of α-Fe2O3 in carbon monoxide (CO) oxidation reaction have been studied for many researchers. However, how to improve the catalytic activity and thermal stability for CO oxidation is still important. In this work, an unusual morphology of α-Fe2O3 was prepared by hydrothermal method and gold nanoparticles were supported using a deposition-precipitation method. Au/α-Fe2O3 catalyst exhibited great activity for CO oxidation. The crystal structure and microstructure images of α-Fe2O3 were carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and the size of gold nanoparticles was determined by transmission electron microscopy (TEM). X-ray photoelectron spectra (XPS) and Fourier transform infrared spectra (FTIR) results confirmed that the state of gold was metallic. The 1.86% Au/α-Fe2O3 catalyst calcined at 300 °C had the best catalytic performance for CO oxidation reaction and the mechanism for CO oxidation reaction was also discussed. It is highly likely that the small size of gold nanoparticle, oxygen vacancies and active sites played the decisive roles in CO oxidation reaction.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 131 ◽  
Author(s):  
Rola Mohammad Al Soubaihi ◽  
Khaled Mohammad Saoud ◽  
Myo Tay Zar Myint ◽  
Mats A. Göthelid ◽  
Joydeep Dutta

Carbon monoxide (CO) oxidation is considered an important reaction in heterogeneous industrial catalysis and has been extensively studied. Pd supported on SiO2 aerogel catalysts exhibit good catalytic activity toward this reaction owing to their CO bond activation capability and thermal stability. Pd/SiO2 catalysts were investigated using carbon monoxide (CO) oxidation as a model reaction. The catalyst becomes active, and the conversion increases after the temperature reaches the ignition temperature (Tig). A normal hysteresis in carbon monoxide (CO) oxidation has been observed, where the catalysts continue to exhibit high catalytic activity (CO conversion remains at 100%) during the extinction even at temperatures lower than Tig. The catalyst was characterized using BET, TEM, XPS, TGA-DSC, and FTIR. In this work, the influence of pretreatment conditions and stability of the active sites on the catalytic activity and hysteresis is presented. The CO oxidation on the Pd/SiO2 catalyst has been attributed to the dissociative adsorption of molecular oxygen and the activation of the C-O bond, followed by diffusion of adsorbates at Tig to form CO2. Whereas, the hysteresis has been explained by the enhanced stability of the active site caused by thermal effects, pretreatment conditions, Pd-SiO2 support interaction, and PdO formation and decomposition.


2012 ◽  
Vol 134 (24) ◽  
pp. 10251-10258 ◽  
Author(s):  
Xiaoyan Liu ◽  
Ming-Han Liu ◽  
Yi-Chia Luo ◽  
Chung-Yuan Mou ◽  
Shawn D. Lin ◽  
...  

2017 ◽  
Vol 5 (36) ◽  
pp. 19316-19322 ◽  
Author(s):  
J. L. Shi ◽  
X. J. Zhao ◽  
L. Y. Zhang ◽  
X. L. Xue ◽  
Z. X. Guo ◽  
...  

Catalysis using gold nanoparticles supported on oxides has been under extensive investigation for many important application processes.


Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 724 ◽  
Author(s):  
Yan Cui ◽  
Leilei Xu ◽  
Mindong Chen ◽  
Chufei Lv ◽  
Xinbo Lian ◽  
...  

CuO-based catalysts are usually used for CO oxidation owing to their low cost and excellent catalytic activities. In this study, a series of metal oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2)-doped CuO-based catalysts with mesoporous Ce0.8Zr0.2O2 support were simply prepared by the incipient impregnation method and used directly as catalysts for CO catalytic oxidation. These mesoporous catalysts were systematically characterized by X-ray powder diffraction (XRD), N2 physisorption, transmission electron microscopy (TEM), energy-dispersed spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and H2 temperature programmed reduction (H2-TPR). It was found that the CuO and the dopants were highly dispersed among the mesoporous framework via the incipient impregnation method, and the strong metal framework interaction had been formed. The effects of the types of the dopants and the loading amounts of the dopants on the low-temperature catalytic performances were carefully studied. It was concluded that doped transition metal oxides could regulate the oxygen mobility and reduction ability of catalysts, further improving the catalytic activity. It was also found that the high dispersion of rare earth metal oxides (PrO2, Sm2O3) was able to prevent the thermal sintering and aggregation of CuO-based catalysts during the process of calcination. In addition, their presence also evidently improved the reducibility and significantly reduced the particle size of the CuO active sites for CO oxidation. The results demonstrated that the 15CuO-3Fe2O3/M-Ce80Zr20 catalyst with 3 wt. % of Fe2O3 showed the best low-temperature catalytic activity toward CO oxidation. Overall, the present Fe2O3-doped CuO-based catalysts with mesoporous nanocrystalline Ce0.8Zr0.2O2 solid solution as support were considered a promising series of catalysts for low-temperature CO oxidation.


2019 ◽  
Vol 25 (S2) ◽  
pp. 2204-2205
Author(s):  
Jia Xu ◽  
Yafeng Cai ◽  
Xu Li ◽  
Jingyue Liu

2020 ◽  
Author(s):  
Tanna Elyn Rodrigues Fiuza ◽  
Danielle Santos Gonçalves ◽  
Igor Ferreira Gomes ◽  
Daniela Zanchet

Sign in / Sign up

Export Citation Format

Share Document