scholarly journals Mega-High-Throughput Screening Platform for the Discovery of Biologically Relevant Sequence-Defined Non-Natural Polymers

Author(s):  
Michal Avital-Shmilovici ◽  
Xiaohe Liu ◽  
Thomas Shaler ◽  
Andrew Lowenthal ◽  
Pauline Bourbon ◽  
...  
2020 ◽  
Author(s):  
Michal Avital-Shmilovici ◽  
Xiaohe Liu ◽  
Thomas Shaler ◽  
Andrew Lowenthal ◽  
Pauline Bourbon ◽  
...  

Combinatorial methods enable the synthesis of chemical libraries on scales of millions to billions of compounds, but the ability to efficiently screen and sequence such large libraries has remained a major bottleneck for molecular discovery. We developed a novel technology for screening and sequencing libraries of synthetic molecules of up to a billion compounds in size. This method utilizes Fiber-optic Array Scanning Technology (FAST) to screen bead-based libraries of synthetic compounds at a rate of 5 million compounds per minute (~83,000 Hz). This ultra-high-throughput screening platform has been used to screen libraries of synthetic “self-readable” non-natural polymers that can be sequenced at femtomole scale by chemical fragmentation and highresolution mass spectrometry. The versatility and throughput of the platform was demonstrated by screening two libraries of non-natural polyamide polymers with sizes of 1.77M and 1B compounds against the protein targets K-Ras, asialoglycoprotein receptor (ASGPR), IL-6, IL-6 receptor and TNFα. Hits with nanomolar binding affinities were found against all targets, including competitive inhibitors of K-Ras binding to Raf and functionally active uptake ligands for ASGPR facilitating intracellular delivery.


2021 ◽  
Author(s):  
Michal Avital-Shmilovici ◽  
Xiaohe Liu ◽  
Thomas Shaler ◽  
Andrew Lowenthal ◽  
Pauline Bourbon ◽  
...  

2020 ◽  
Author(s):  
Michal Avital-Shmilovici ◽  
Xiaohe Liu ◽  
Thomas Shaler ◽  
Andrew Lowenthal ◽  
Pauline Bourbon ◽  
...  

Combinatorial methods enable the synthesis of chemical libraries on scales of millions to billions of compounds, but the ability to efficiently screen and sequence such large libraries has remained a major bottleneck for molecular discovery. We developed a novel technology for screening and sequencing libraries of synthetic molecules of up to a billion compounds in size. This method utilizes Fiber-optic Array Scanning Technology (FAST) to screen bead-based libraries of synthetic compounds at a rate of 5 million compounds per minute (~83,000 Hz). This ultra-high-throughput screening platform has been used to screen libraries of synthetic “self-readable” non-natural polymers that can be sequenced at femtomole scale by chemical fragmentation and highresolution mass spectrometry. The versatility and throughput of the platform was demonstrated by screening two libraries of non-natural polyamide polymers with sizes of 1.77M and 1B compounds against the protein targets K-Ras, asialoglycoprotein receptor (ASGPR), IL-6, IL-6 receptor and TNFα. Hits with nanomolar binding affinities were found against all targets, including competitive inhibitors of K-Ras binding to Raf and functionally active uptake ligands for ASGPR facilitating intracellular delivery.


2021 ◽  
Author(s):  
Michal Avital-Shmilovici ◽  
Xiaohe Liu ◽  
Thomas Shaler ◽  
Andrew Lowenthal ◽  
Pauline Bourbon ◽  
...  

ACS Nano ◽  
2021 ◽  
Author(s):  
Sneh M. Toprani ◽  
Dimitrios Bitounis ◽  
Qiansheng Huang ◽  
Nathalia Oliveira ◽  
Kee Woei Ng ◽  
...  

ACS Sensors ◽  
2020 ◽  
Author(s):  
Ke-Jia Wu ◽  
Chun Wu ◽  
Feng Chen ◽  
Sha-Sha Cheng ◽  
Dik-Lung Ma ◽  
...  

2016 ◽  
Vol 60 (10) ◽  
pp. 5995-6002 ◽  
Author(s):  
Kristin R. Baker ◽  
Bimal Jana ◽  
Henrik Franzyk ◽  
Luca Guardabassi

ABSTRACTThe envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measureEscherichia colienvelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds andE. coligene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinctE. colistrains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R> 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.


2019 ◽  
Vol 25 (2) ◽  
pp. 215-222
Author(s):  
Hyun Yong Jin ◽  
Yanyan Tudor ◽  
Kaylee Choi ◽  
Zhifei Shao ◽  
Brian A. Sparling ◽  
...  

The real-time quantification of target engagement (TE) by small-molecule ligands in living cells remains technically challenging. Systematic quantification of such interactions in a high-throughput setting holds promise for identification of target-specific, potent small molecules within a pathophysiological and biologically relevant cellular context. The salt-inducible kinases (SIKs) belong to a subfamily of the AMP-activated protein kinase (AMPK) family and are composed of three isoforms in humans (SIK1, SIK2, and SIK3). They modulate the production of pro- and anti-inflammatory cytokines in immune cells. Although pan-SIK inhibitors are sufficient to reverse SIK-dependent inflammatory responses, the apparent toxicity associated with SIK3 inhibition suggests that isoform-specific inhibition is required to realize therapeutic benefit with acceptable safety margins. Here, we used the NanoBRET TE intracellular kinase assay, a sensitive energy transfer technique, to directly measure molecular proximity and quantify TE in HEK293T cells overexpressing SIK2 or SIK3. Our 384-well high-throughput screening of 530 compounds demonstrates that the NanoBRET TE intracellular kinase assay was sensitive and robust enough to reveal differential engagement of candidate compounds with the two SIK isoforms and further highlights the feasibility of high-throughput implementation of NanoBRET TE intracellular kinase assays for target-driven small-molecule screening.


Sign in / Sign up

Export Citation Format

Share Document