Fluorescent Labeling of the Nuclear Envelope by Localizing Green Fluorescent Protein on the Inner Nuclear Membrane

2018 ◽  
Vol 13 (6) ◽  
pp. 1463-1469 ◽  
Author(s):  
Toshiyuki Taniyama ◽  
Natsumi Tsuda ◽  
Shinji Sueda
1999 ◽  
Vol 112 (11) ◽  
pp. 1709-1719 ◽  
Author(s):  
C. Ostlund ◽  
J. Ellenberg ◽  
E. Hallberg ◽  
J. Lippincott-Schwartz ◽  
H.J. Worman

Emerin is an integral protein of the inner nuclear membrane that is mutated or not expressed in patients with Emery-Dreifuss muscular dystrophy. Confocal immunofluorescence microscopy studies of the intracellular targeting of truncated forms of emerin, some of which are found in patients with Emery-Dreifuss muscular dystrophy, show that the nucleoplasmic, amino-terminal domain is necessary and sufficient for nuclear retention. When this domain is fused to a transmembrane segment of an integral membrane protein of the ER/plasma membrane, the chimeric protein is localized in the inner nuclear membrane. The transmembrane segment of emerin is not targeted to the inner nuclear membrane. Fluorescence photobleaching experiments of emerin fused to green fluorescent protein demonstrate that the diffusional mobility (D) of emerin is decreased in the inner nuclear membrane (D=0.10+/-0.01 microm2/second) compared to the ER membrane (D=0.32+/-0.01 microm2/second). This is in agreement with a model where integral proteins reach the inner nuclear membrane by lateral diffusion and are retained there by association with nucleoplasmic components. Some overexpressed emerin-green fluorescent protein also reaches the plasma membrane of transfected cells, where its diffusion is similar to that in the inner nuclear membrane, suggesting that emerin may also associate with non-nuclear structures.


2000 ◽  
Vol 11 (9) ◽  
pp. 3233-3246 ◽  
Author(s):  
Helmut Hofemeister ◽  
Klaus Weber ◽  
Reimer Stick

Targeting of nuclear lamins to the inner nuclear envelope membrane requires a nuclear localization signal and CaaX motif–dependent posttranslational modifications, including isoprenylation and carboxyl methylation. These modifications, although necessary for membrane targeting, are not sufficient to mediate stable association with membranes. We show that two variants of lamin B3 (i.e., B3a and B3b) exist in Xenopus oocytes. They are encoded by two alternatively spliced, developmentally regulated mRNAs. The two lamin variants differ greatly in their membrane association in meiotically matured eggs. The presence of an extra cysteine residue (as a potential palmitoylation site) and a basic cluster in conjunction with the CaaX motif function as secondary targeting signals responsible for the stable membrane association of lamin B3b in Xenopuseggs. Moreover, transfection experiments with Green Fluorescent Protein lamin tail chimeras and with a Green Fluorescent Protein N-Ras chimera show that these secondary motifs are sufficient to target proteins to the inner nuclear membrane and/or the plasma membrane. Implications for the intracellular trafficking of doubly lipidated proteins are discussed.


2002 ◽  
Vol 115 (7) ◽  
pp. 1361-1371 ◽  
Author(s):  
Wei Wu ◽  
Feng Lin ◽  
Howard J. Worman

MAN1 is an integral protein of the inner nuclear membrane that shares the LEM domain, a conserved globular domain of approximately 40 amino acids, with lamina-associated polypeptide (LAP) 2 and emerin. Confocal immuofluorescence microscopy studies of the intracellular targeting of truncated forms of MAN1 showed that the nucleoplasmic, N-terminal domain is necessary for inner nuclear membrane retention. A protein containing the N-terminal domain with the first transmembrane segment of MAN1 is retained in the inner nuclear membrane, whereas the transmembrane segments with the C-terminal domain of MAN1 is not targeted to the inner nuclear membrane. The N-terminal domain of MAN1 is also sufficient for inner nuclear membrane targeting as it can target a chimeric type II integral protein to this subcellular location. Deletion mutants of the N-terminal of MAN1 are not efficiently retained in the inner nuclear membrane. When the N-terminal domain of MAN1 is increased in size from∼50 kDa to ∼100 kDa, the protein cannot reach the inner nuclear membrane. Fluorescence recovery after photobleaching experiments of MAN1 fused to green fluorescent protein show that the fusion protein is relatively immobile in the nuclear envelope compared with the endoplasmic reticulum of interphase cells, suggesting binding to a nuclear component. These results are in agreement with the `diffusion-retention' model for targeting integral proteins to the inner nuclear membrane.


2000 ◽  
Vol 151 (6) ◽  
pp. 1155-1168 ◽  
Author(s):  
Robert D. Moir ◽  
Miri Yoon ◽  
Satya Khuon ◽  
Robert D. Goldman

At the end of mitosis, the nuclear lamins assemble to form the nuclear lamina during nuclear envelope formation in daughter cells. We have fused A- and B-type nuclear lamins to the green fluorescent protein to study this process in living cells. The results reveal that the A- and B-type lamins exhibit different pathways of assembly. In the early stages of mitosis, both lamins are distributed throughout the cytoplasm in a diffusible (nonpolymerized) state, as demonstrated by fluorescence recovery after photobleaching (FRAP). During the anaphase-telophase transition, lamin B1 begins to become concentrated at the surface of the chromosomes. As the chromosomes reach the spindle poles, virtually all of the detectable lamin B1 has accumulated at their surfaces. Subsequently, this lamin rapidly encloses the entire perimeter of the region containing decondensing chromosomes in each daughter cell. By this time, lamin B1 has assembled into a relatively stable polymer, as indicated by FRAP analyses and insolubility in detergent/high ionic strength solutions. In contrast, the association of lamin A with the nucleus begins only after the major components of the nuclear envelope including pore complexes are assembled in daughter cells. Initially, lamin A is found in an unpolymerized state throughout the nucleoplasm of daughter cell nuclei in early G1 and only gradually becomes incorporated into the peripheral lamina during the first few hours of this stage of the cell cycle. In later stages of G1, FRAP analyses suggest that both green fluorescent protein lamins A and B1 form higher order polymers throughout interphase nuclei.


Sign in / Sign up

Export Citation Format

Share Document