Aldol Reactions of Biorenewable Triacetic Acid Lactone Precursor Evaluated Using Desorption Electrospray Ionization Mass Spectrometry High-Throughput Experimentation and Validated by Continuous Flow Synthesis

2020 ◽  
Vol 22 (12) ◽  
pp. 796-803
Author(s):  
H. Samuel Ewan ◽  
Shruti A. Biyani ◽  
Jaycie DiDomenico ◽  
David Logsdon ◽  
Tiago J. P. Sobreira ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bradley P. Loren ◽  
H. Samuel Ewan ◽  
Larisa Avramova ◽  
Christina R. Ferreira ◽  
Tiago J. P. Sobreira ◽  
...  

Abstract We demonstrate the use of accelerated reactions with desorption electrospray ionization mass spectrometry (DESI-MS) as a tool for predicting the outcome of microfluidic reactions. DESI-MS was employed as a high throughput experimentation tool to provide qualitative predictions of reaction outcomes, so that vast regions of chemical reactivity space may be more rapidly explored and areas of optimal efficiency identified. This work is part of a larger effort to accelerate reaction optimization to enable the rapid development of continuous-flow syntheses of small molecules in high yield. In order to build confidence in this approach, however, it is necessary to establish a robust predictive connection between reactions performed under analogous DESI-MS, batch, and microfluidic reaction conditions. In the present work, we explore the potential of high throughput DESI-MS experiments to identify trends in reactivity based on chemical structure, solvent, temperature, and stoichiometry that are consistent across these platforms. N-alkylation reactions were used as the test case due to their ease of reactant and product detection by electrospray ionization mass spectrometry (ESI-MS) and their great importance in API synthesis. While DESI-MS narrowed the scope of possibilities for reaction selection among some parameters such as solvent, others like stoichiometry and temperature still required further optimization under continuous synthesis conditions. DESI-MS high throughput experimentation (HTE) reaction evaluation significantly reduced the search space for flow chemistry optimization, thus representing a significant savings in time and materials to achieve a desired transformation with high efficiency.


2020 ◽  
Vol 12 (28) ◽  
pp. 3654-3669
Author(s):  
Tiago Jose P. Sobreira ◽  
Larisa Avramova ◽  
Botond Szilagyi ◽  
David L. Logsdon ◽  
Bradley P. Loren ◽  
...  

Implementation of a novel method for high-throughput screening of reactions in microdroplets. The reaction and analysis steps are performed simultaneously using desorption electrospray ionization mass spectrometry (DESI-MS) at a rate of up to 1 reaction mixture per second.


Sign in / Sign up

Export Citation Format

Share Document