Piezoelectric Disinfection of Water Co-Polluted by Bacteria and Microplastics Energized by Water Flow

2022 ◽  
Author(s):  
Shenyu Lan ◽  
Xiwang Ke ◽  
Zhi Li ◽  
Lei Mai ◽  
Mingshan Zhu ◽  
...  
Keyword(s):  
Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

The amphibian urinary bladder has been used as a ‘model’ system for studies of the mechanism of action of antidiuretic hormone (ADH) in stimulating transepithelial water flow. The increase in water permeability is accompanied by morphological changes that include the stimulation of apical microvilli, mobilization of microtubules and microfilaments and vesicular membrane fusion events . It has been shown that alterations in the cytosolic calcium concentrations can inhibit ADH transmembrane water flow and induce alterations in the epithelial cell cytomorphology, including the cytoskeletal system . Recently, the subapical granules of the granular cell in the amphibian urinary bladder have been shown to contain high concentrations of calcium, and it was suggested that these cytoplasmic constituents may act as calcium storage sites for intracellular calcium homeostasis. The present study utilizes the calcium antagonist, verapamil, to examine the effect of calcium deprivation on the cytomorphological features of epithelial cells from amphibian urinary bladder, with particular emphasis on subapical granule and microfilament distribution.


Author(s):  
Enrico Marchi ◽  
Attilio Adami ◽  
Alfredo Caielli ◽  
Giovanni Cecconi

Author(s):  
Anatoly Kusher

The reliability of water flow measurement in irrigational canals depends on the measurement method and design features of the flow-measuring structure and the upstream flow velocity profile. The flow velocity profile is a function of the channel geometry and wall roughness. The article presents the study results of the influence of the upstream flow velocity profile on the discharge measurement accuracy. For this, the physical and numerical modeling of two structures was carried out: a critical depth flume and a hydrometric overfall in a rectangular channel. According to the data of numerical simulation of the critical depth flume with a uniform and parabolic (1/7) velocity profile in the upstream channel, the values of water discharge differ very little from the experimental values in the laboratory model with a similar geometry (δ < 2 %). In contrast to the critical depth flume, a change in the velocity profile only due to an increase in the height of the bottom roughness by 3 mm causes a decrease of the overfall discharge coefficient by 4…5 %. According to the results of the numerical and physical modeling, it was found that an increase of backwater by hydrometric structure reduces the influence of the upstream flow velocity profile and increases the reliability of water flow measurements.


The intensification of the work of open gutter by applying textured shells to their bottom surface, forming an artificial roughness, is considered. It is shown that the presence of corrugated surfaces contributes to vortex formation during water flow and improves the separation and transportation of mineral impurities previously dropped into the bottom of the gutters. The implementation of operations to improve the structure of the gutters is possible during the repair and restoration works with the use of modern polymer materials. The design of a small-sized hydraulic stand, which makes it possible to study the transport capacity of flows containing solid inclusions, is presented. The method of research is hydraulic testing, accompanied by the use of chiaroscuro effect, as well as photo and film equipment. The optimal structure of the inner surface of the gutters and pipes providing vortex formation, which will improve the ability of the flow to carry out and transport foreign dispersed inclusions (sand) of different granulometric compositions, is determined.


2011 ◽  
Vol 2 (1) ◽  
pp. 13-17
Author(s):  
I. David ◽  
M. Visescu

Abstract Geothermal energy source is the heat from the Earth, which ranges from the shallow ground (the upper 100 m of the Earth) to the hot water and hot rock which is a few thousand meters beneath the Earth's surface. In both cases the so-called open systems for geothermal energy resource exploitation consist of a groundwater production well to supply heat energy and an injection well to return the cooled water, from the heat pump after the thermal energy transfer, in the underground. In the paper an analytical method for a rapid estimation of the ground water flow direction effect on the coupled production well and injection well system will be proposed. The method will be illustrated with solutions and images for representative flow directions respect to the axis of the production/injection well system.


2014 ◽  
Vol 8 (6) ◽  
pp. 1149
Author(s):  
Dimitra A. Zoga ◽  
Dimitrios S. Georgakis-Gavrilis ◽  
Dionissios P. Margaris

1970 ◽  
Author(s):  
B. A. Zenkevich ◽  
P. L. Kirillov ◽  
G. V. Alekseev ◽  
O. L. Peskov ◽  
O. A. Sudnitsyn

Sign in / Sign up

Export Citation Format

Share Document