Synthesis of l-Tyrosine by Pichia pastoris Displaying Tyrosine Phenol Lyase

Author(s):  
Shiming Tang ◽  
Yiwen Zheng ◽  
NanNan Zhao ◽  
Ying Lin ◽  
Shuangyan Han ◽  
...  
2015 ◽  
Vol 37 (1se) ◽  
Author(s):  
Duong Long Duy ◽  
Pham Minh Vu ◽  
Nguyen Tri Nhan ◽  
Tran Linh Thuoc ◽  
Dang Thi Phuong Thao

Author(s):  
Rafid A. Abdulkareem

The main goal of the current study was cloning and expression of the human insulin gene in Pichia pastoris expression system, using genetic engineering techniques and its treatment application. Total RNA was purified from fresh normal human pancreatic tissue. RNA of good quality was chosen to obtain a first single strand cDNA. Human preproinsulin gene was amplified from cDNA strand, by using two sets of specific primers contain EcoR1 and Notl restriction sites. The amplified preproinsulin gene fragment was double digested with EcoRI and Not 1 restriction enzymes, then inserted into pPIC9K expression vector. The new pPIC9K-hpi constructive expression vector was transformed by the heat-shock method into the E.coli DH5α competent cells. pPic9k –hpi, which was propagated in the positive transformant E. coli cells, was isolated from cells and then linearised by restriction enzyme SalI, then transformed into Pichia pastoris GS115 using electroporation method. Genomic DNA of His+ transformants cell was extracted and used as a template for PCR analysis. The results showed, that the pPic9k – hpi was successfully integrated into the P. pastoris genome, for selected His+ transformants clones on the anticipated band at 330 bp, which is corresponded to the theoretical molecular size of the human insulin gene. To follow the insulin expression in transformans, Tricine–SDS gel electrophoresis and Western blot analysis were conducted. The results showed a successful expression of recombinant protein was detected by the presence of a single major band with about (5.8 KDa) on the gel. These bands correspond well with the size of human insulin with the theoretical molecular weight (5.8 KDa).


2010 ◽  
Vol 36 (6) ◽  
pp. 1091-1096
Author(s):  
Shu-Guang BIAN ◽  
Hua-Xin CHEN ◽  
Peng JIANG ◽  
Hai-Bo ZHANG ◽  
Zhao-Pu LIU ◽  
...  

2018 ◽  
Vol 34 (4) ◽  
pp. 18-25 ◽  
Author(s):  
T.L. Gordeeva ◽  
◽  
L.N. Borshchevskaya ◽  
A.N. Kalinina ◽  
S.P. Sineoky ◽  
...  

2016 ◽  
Vol 23 (8) ◽  
pp. 763-769 ◽  
Author(s):  
Pengfei Li ◽  
Ganggang Yang ◽  
Xiaofang Geng ◽  
Jinbao Shi ◽  
Bin Li ◽  
...  

2021 ◽  
Vol 28 ◽  
Author(s):  
Ersin Karataş ◽  
Ahmet Tülek ◽  
Mehmet Mervan Çakar ◽  
Faruk Tamtürk ◽  
Fatih Aktaş ◽  
...  

Background: Polygalacturonases are a group of enzymes under pectinolytic enzymes related to enzymes that hydrolyse pectic substances. Polygalacturonases have been used in various industrial applications such as fruit juice clarification, retting of plant fibers, wastewater treatment drinks fermentation, and oil extraction. Objectives: The study was evaluated at the heterologous expression, purification, biochemical characterization, computational modeling, and performance in apple juice clarification of a new exo-polygalacturonase from Sporothrix schenckii 1099-18 (SsExo-PG) in Pichia pastoris. Methods: Recombinant DNA technology was used in this study. Two different pPIC9K plasmids were constructed with native signal sequence-ssexo-pg and alpha signal sequence-ssexo-pg separately. Protein expression and purification performed after plasmids transformed into the Pichia pastoris. Biochemical and structural analyses were performed by using pure SsExo-PG. Results: The purification of SsExo-PG was achieved using a Ni-NTA chromatography system. The enzyme was found to have a molecular mass of approximately 52 kDa. SsExo-PG presented as stable at a wide range of temperature and pH values, and to be more storage stable than other commercial pectinolytic enzyme mixtures. Structural analysis revealed that the catalytic residues of SsExo-PG are somewhat similar to other Exo-PGs. The KM and kcat values for the degradation of polygalacturonic acid (PGA) by the purified enzyme were found to be 0.5868 µM and 179 s-1, respectively. Cu2+ was found to enhance SsExo-PG activity while Ag2+ and Fe2+ almost completely inhibited enzyme activity. The enzyme reduced turbidity up to 80% thus enhanced the clarification of apple juice. SsExo-PG showed promising performance when compared with other commercial pectinolytic enzyme mixtures. Conclusion: The clarification potential of SsExo-PG was revealed by comparing it with commercial pectinolytic enzymes. The following parameters of the process of apple juice clarification processes showed that SsExo-PG is highly stable and has a novel performance.


2021 ◽  
Author(s):  
F. Shabihah ◽  
S. Pambudi ◽  
F. A. Sitepu ◽  
C. Ikhsan ◽  
B. Yohan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document