Terahertz Birefringent Biomimetic Aerogels Based on Cellulose Nanofibers and Conductive Nanomaterials

ACS Nano ◽  
2021 ◽  
Vol 15 (4) ◽  
pp. 7451-7462
Author(s):  
Zhihui Zeng ◽  
Elena Mavrona ◽  
Daniel Sacré ◽  
Nico Kummer ◽  
Jingming Cao ◽  
...  
Author(s):  
Elena Mavrona ◽  
Zhihui Zeng ◽  
Daniel Sacre ◽  
Jingming Cao ◽  
Erwin Hack ◽  
...  

2018 ◽  
Vol 72 (1) ◽  
pp. 59-65
Author(s):  
Masayuki Kawasaki
Keyword(s):  

2020 ◽  
Vol 31 (7) ◽  
pp. 2932-2941 ◽  
Author(s):  
Annie M. Rahmatika ◽  
Yohsuke Goi ◽  
Takeo Kitamura ◽  
Yuko Morita ◽  
Ferry Iskandar ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1841
Author(s):  
Kang Li ◽  
Xuejie Zhang ◽  
Yan Qin ◽  
Ying Li

Aerogels have been widely used in the adsorption of pollutants because of their large specific surface area. As an environmentally friendly natural polysaccharide, cellulose is a good candidate for the preparation of aerogels due to its wide sources and abundant polar groups. In this paper, an approach to construct cellulose nanofibers aerogels with both the good mechanical property and the high pollutants adsorption capability through chemical crosslinking was explored. On this basis, TiO2 nanoparticles were loaded on the aerogel through the sol-gel method followed by the hydrothermal method, thereby the enriched pollutants in the aerogel could be degraded synchronously. The chemical cross-linker not only helps build the three-dimensional network structure of aerogels, but also provides loading sites for TiO2. The degradation efficiency of pollutants by the TiO2@CNF Aerogel can reach more than 90% after 4 h, and the efficiency is still more than 70% after five cycles. The prepared TiO2@CNF Aerogels have high potential in the field of environmental management, because of the high efficiency of treating organic pollutes and the sustainability of the materials. The work also provides a choice for the functional utilization of cellulose, offering a valuable method to utilize the large amount of cellulose in nature.


2021 ◽  
Vol 33 (28) ◽  
pp. 2170219
Author(s):  
Tomas Rosén ◽  
Benjamin S. Hsiao ◽  
L. Daniel Söderberg
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 914
Author(s):  
Arsalan Ul Haq ◽  
Felicia Carotenuto ◽  
Paolo Di Nardo ◽  
Roberto Francini ◽  
Paolo Prosposito ◽  
...  

Myocardial infarction (MI) is the consequence of coronary artery thrombosis resulting in ischemia and necrosis of the myocardium. As a result, billions of contractile cardiomyocytes are lost with poor innate regeneration capability. This degenerated tissue is replaced by collagen-rich fibrotic scar tissue as the usual body response to quickly repair the injury. The non-conductive nature of this tissue results in arrhythmias and asynchronous beating leading to total heart failure in the long run due to ventricular remodelling. Traditional pharmacological and assistive device approaches have failed to meet the utmost need for tissue regeneration to repair MI injuries. Engineered heart tissues (EHTs) seem promising alternatives, but their non-conductive nature could not resolve problems such as arrhythmias and asynchronous beating for long term in-vivo applications. The ability of nanotechnology to mimic the nano-bioarchitecture of the extracellular matrix and the potential of cardiac tissue engineering to engineer heart-like tissues makes it a unique combination to develop conductive constructs. Biomaterials blended with conductive nanomaterials could yield conductive constructs (referred to as extrinsically conductive). These cell-laden conductive constructs can alleviate cardiac functions when implanted in-vivo. A succinct review of the most promising applications of nanomaterials in cardiac tissue engineering to repair MI injuries is presented with a focus on extrinsically conductive nanomaterials.


Cellulose ◽  
2021 ◽  
Author(s):  
Katri S. Kontturi ◽  
Koon-Yang Lee ◽  
Mitchell P. Jones ◽  
William W. Sampson ◽  
Alexander Bismarck ◽  
...  

Abstract Cellulose nanopapers provide diverse, strong and lightweight templates prepared entirely from sustainable raw materials, cellulose nanofibers (CNFs). Yet the strength of CNFs has not been fully capitalized in the resulting nanopapers and the relative influence of CNF strength, their bonding, and biological origin to nanopaper strength are unknown. Here, we show that basic principles from paper physics can be applied to CNF nanopapers to illuminate those relationships. Importantly, it appeared that ~ 200 MPa was the theoretical maximum for nanopapers with random fibril orientation. Furthermore, we demonstrate the contrast in tensile strength for nanopapers prepared from bacterial cellulose (BC) and wood-based nanofibrillated cellulose (NFC). Endemic amorphous polysaccharides (hemicelluloses) in NFC act as matrix in NFC nanopapers, strengthening the bonding between CNFs just like it improves the bonding between CNFs in the primary cell wall of plants. The conclusions apply to all composites containing non-woven fiber mats as reinforcement. Graphic abstract


2021 ◽  
Vol 27 ◽  
pp. 100180
Author(s):  
A.M. Serpa Guerra ◽  
C. Gómez Hoyos ◽  
J.A. Velásquez-Cock ◽  
P. Gañán Rojo ◽  
A. Eceiza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document