fiber mats
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 133)

H-INDEX

44
(FIVE YEARS 9)

Author(s):  
Anna Voronova ◽  
Cristina Prieto ◽  
Maria Pardo-Figuerez ◽  
Jose Maria Lagaron ◽  
Amitav Sanyal ◽  
...  
Keyword(s):  

2022 ◽  
Vol 6 (1) ◽  
pp. 28
Author(s):  
Yong X. Gan ◽  
Ali Arjan ◽  
Jimmy Yik

This paper deals with preparing a functional composite carbon fiber with a large surface area for spilled oil cleaning. The composite fiber consisted of photosensitive oxide particles and polymer-derived carbon. It was made by co-spinning the polymer and metallic compounds. After heat treatment at high temperatures, an activated carbon fiber containing oxide particles was obtained. The particles were found distributed in the fiber and at the surface of the fiber. The composite fiber was found sensitive to sunlight. Fiber mats made of the composite fiber possessed a high surface area for oil absorption and removal. Cobalt(II) titanate particles were obtained from the reaction of titanium dioxide and cobalt oxide. The reaction happened in situ through the hydrolysis of metallic compounds in the spun fiber. The titanium dioxide and cobalt(II) titanate particle-containing fibers demonstrated the photoactivity in the visible light spectrum. It was concluded that particle-containing composite carbon fiber mats can be prepared successfully by co-electrospinning. Due to the oleophilic property and the high active surface area, the composites are suitable for spilled oil cleaning through fast absorption.


Author(s):  
Teresa Marques‐Almeida ◽  
Liliana C. Fernandes ◽  
Daniela M. Correia ◽  
Carmen R. Tubio ◽  
Senentxu Lanceros‐Mendez ◽  
...  

Author(s):  
Sk Shamim Hasan Abir ◽  
Muhtasim Ul Karim Sadaf ◽  
Sunanda Kumar Saha ◽  
Ahmed Touhami ◽  
Karen Lozano ◽  
...  

Author(s):  
Chengzhi Zhou ◽  
Yanlong Sun ◽  
Fan Zhang ◽  
Yuandong Wu

The photocatalytic degradation of minocycline was studied by using polyvinylidene fluoride–polyvinylpyrrolidone–TiO2 (PVDF–PVP–TiO2) fiber mats prepared by an electrospinning technology. The influences of the TiO2 dosage, minocycline concentrations, inorganic anions, pH values, and dissolved organic matter (DOM) concentrations on the degradation kinetics were investigated. A mass of 97% minocycline was degraded in 45 min at 5% TiO2 dosage. The corresponding decomposition rate constant was 0.069 min−1. The inorganic anions affected the minocycline decomposition in the order of HCO3− > Cl− > SO42− > NO3−, which was confirmed by the results of electron spin resonance (ESR) spectra. The lowest electrical energy per order (EEO) was 6.5 Wh/L. Over five cycles, there was no change in the photocatalytic performance of the degrading minocycline. Those investigations suggested that effective degradation of minocycline could be reached in the PVDF–PVP–TiO2 fiber mats with a low energy consumption, good separation and, good recovery. Three photocatalytic decomposition pathways of minocycline were proposed: (i) hydroxyl substitution of the acylamino group; (ii) hydroxyl substitution of the amide group, and (iii) a cleavage of the methyl groups and further oxidation of the amino group by OH. Potential risks caused by TP159 and TP99 should not be ignored, while the TP90 are nontoxic. Tests indicated that the toxicity of the photocatalytic process may be persistent if minocycline and its products were not mineralized completely.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
C. Q. Zhang ◽  
Y. M. Wang ◽  
S. Z. Li ◽  
X. D. Feng ◽  
L. H. Liu ◽  
...  

A series of novel composite microfibers composed of β-cyclodextrin (β-CDs) functionalized POM (polyoxymethylene) were prepared using electrospining technology with a mixture of hexafluoroisopropanol (HFIP) and N,N-dimethylformamide (DMF) as solvent. The concentration of β-CDs with respect to the POM was varied from 0 to 50 wt.%. The effect of β-CDs content on the morphology of POM/β-CD composite microfiber was investigated. The results showed that the introduction of β-CDs reduced the surface roughness and porosity of the microfibers, and the morphology of the fibers was changed. The increase of β-CDs content from 10% to 50% has led to increased average diameter of POM/β-CD composite fiber from 2.1 μm to 6.4 μm. The mechanical properties of the blend fiber mats were further investigated. In addition, silver nanoparticles were introduced to the POM/β-CD composite microfiber matrices during electrospinning. The POM/β-CD composite fiber allows CDs to form host–guest complexes with various small molecules and macromolecules. The TEM, SEM, XRD, and XPS were utilized to characterize the prepared samples. The data suggest that Ag nanoparticles were homogeneously distributed within the POM/β-CD fibers, and no aggregation was observed. The catalytic activity of Ag nanoparticles was tracked by ultraviolet-visible (UV-vis) spectroscopy which showed excellent catalytic degradation performance of organic dyes in the presence of NaBH4. The Ag/POM/β-CD mats are promising for use in waste treatment, molecular recognition, catalysis, and so on.


Author(s):  
M.R. Koblischka ◽  
A. Koblischka-Veneva ◽  
A.L. Pessoa ◽  
C.L. Carvalho ◽  
R. Zadorosny

Sign in / Sign up

Export Citation Format

Share Document