scholarly journals Reaction Mechanism of Wollastonite In Situ Mineral Carbonation for CO2 Sequestration: Effects of Saline Conditions, Temperature, and Pressure

ACS Omega ◽  
2020 ◽  
Vol 5 (45) ◽  
pp. 28942-28954 ◽  
Author(s):  
M. Zuhaili Kashim ◽  
Haylay Tsegab ◽  
Omeid Rahmani ◽  
Zainol Affendi Abu Bakar ◽  
Shahram M. Aminpour
2017 ◽  
Vol 282 ◽  
pp. 136-141 ◽  
Author(s):  
Erika L. Sesti ◽  
Jinlei Cui ◽  
Sophia E. Hayes ◽  
Mark S. Conradi

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shen Wang ◽  
Hongbo Xu ◽  
Tingting Hao ◽  
Peiyuan Wang ◽  
Xiang Zhang ◽  
...  

AbstractElectrochromic supercapacitors (ESCs) are appealing for smart electronic device applications due to their advantages of dual-function integration. Unfortunately, the synchronous dual-function evaluation and the essential reaction mechanism are ambiguous. Herein, we constructed a 3D WO3-x nanowire networks/fluorine-doped tin oxide (WO3-x NWNs/FTO) bifunctional electrode for ESCs by a solvothermal self-crystal seeding method. The synchronous correspondence relationship between the optical and electrochemical performances of the WO3-x NWNs/FTO electrode was explored using an operando spectra-electrochemical characterization method. It reveals an excellent areal capacity of 57.57 mF cm−2 with a high corresponding optical modulation (ΔT) of 85.05% and high optical-electrochemical cycling stability. Furthermore, the synergistic reaction mechanism between the Al3+ ion intercalation behavior and the surface pseudocapacitance reaction during electrochemical cycling is revealed utilizing in situ X-ray diffraction. Based on these results, an ESC device was constructed by pairing WO3-x/FTO as the cathode with V2O5 nanoflowers/FTO (V2O5 NFs/FTO) as the anode, which simultaneously deliver high capacity and large optical modulation. Moreover, the energy storage level of the ESC device could be visually monitored by rapid and reversible color transitions in real time. This work provides a promising pathway to developing multi-functional integrated smart supercapacitors.


2011 ◽  
Vol 257 (7) ◽  
pp. 2707-2711 ◽  
Author(s):  
S. Bruijn ◽  
R.W.E. van de Kruijs ◽  
A.E. Yakshin ◽  
F. Bijkerk

2016 ◽  
Vol 12 ◽  
pp. 1421-1427 ◽  
Author(s):  
Grzegorz Mlostoń ◽  
Róża Hamera-Fałdyga ◽  
Anthony Linden ◽  
Heinz Heimgartner
Keyword(s):  

Ferrocenyl hetaryl thioketones react smoothly with in situ generated thiocarbonyl S-methanides to give 1,3-dithiolanes. In the case of aromatic S-methanides, the sterically more crowded 4,4,5,5-tetrasubstituted 1,3-dithiolanes (2-CH2 isomers) were formed as sole products. The reactions with cycloaliphatic S-methanides led to mixtures of 2-CH2 and 5-CH2 isomers with the major component being the sterically more crowded 2-CH2 isomers. The preferred formation of the latter products is explained by the assumption that the formal [3 + 2]-cycloadducts were formed via a stepwise reaction mechanism with a stabilized 1,5-diradical as a key intermediate. The complete change of the reaction mechanism toward the concerted [3 + 2]-cycloaddition was observed in the reaction of a sterically crowded cycloaliphatic thiocarbonyl ylide with ferrocenyl methyl thioketone.


Fuel ◽  
2019 ◽  
Vol 239 ◽  
pp. 162-172 ◽  
Author(s):  
Guoliang Li ◽  
Shuxiao Wang ◽  
Qingru Wu ◽  
Junhua Li ◽  
Xiaoqing You ◽  
...  

2008 ◽  
Vol 26 (5) ◽  
pp. 293-309 ◽  
Author(s):  
K. Baris ◽  
A. Ozarslan ◽  
N. Sahin

This paper examines the CO2 sequestration potential of magnesium silicate minerals in Turkey for two example cases, the Orhaneli-Bursa and Divrigi-Sivas regions. The distribution and properties of the silicate mineral deposits are provided and the quantities of CO2 that can be sequestered in these deposits is estimated. The silicate minerals in the Orhaneli and Divrigi deposits provide significant CO2 sequestration capacity. Assuming 100% mineral carbonation efficiency, approximately 2.4 million tons/year of olivine and 6.5 million tons/year of serpentine would be required to sequester the CO2 released by the power plants investigated in this study. Although more detailed studies are needed, it is concluded that this approach has potential given Turkey's large dunite (olivine) and serpentine reserves. Furthermore, the proximity of these deposits and active open-pit mines to thermal power plants emitting CO2 facilitate the utilization of mineral carbonation.


2019 ◽  
Vol 297 ◽  
pp. 46-54 ◽  
Author(s):  
Libing Yao ◽  
Meng Nie ◽  
Chongyang Zhu ◽  
Ran Cai ◽  
Weiwei Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document