electrochemical polymerization
Recently Published Documents


TOTAL DOCUMENTS

866
(FIVE YEARS 133)

H-INDEX

55
(FIVE YEARS 8)

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 183
Author(s):  
Waleed A. El-Said ◽  
Jin-Ha Choi ◽  
Dina Hajjar ◽  
Arwa A. Makki ◽  
Jeong-Woo Choi

Recently, more and more attention has been paid to the development of eco-friendly solid sorbents that are cost-effective, noncorrosive, have a high gas capacity, and have low renewable energy for CO2 capture. Here, we claimed the fabrication of a three-dimensional (3D) film of hollow nanocones with a large surface area (949.5 m2/g), a large contact angle of 136.3°, and high surface energy. The synthetic technique is based on an electrochemical polymerization process followed by a novel and simple strategy for pulling off the formed layers as a membrane. Although the polymer-coated substrates were reported previously, the membrane formation has not been reported elsewhere. The detachable capability of the manufactured layer as a membrane braked the previous boundaries and allows the membrane’s uses in a wide range of applications. This 3D hollow nanocones membrane offer advantages over conventional ones in that they combine a π-electron-rich (aromatic ring), hydrophobicity, a large surface area, multiple amino groups, and a large pore volume. These substantial features are vital for CO2 capturing and storage. Furthermore, the hydrophobicity characteristic and application of the formed polymer as a CO2 sucker were investigated. These results demonstrated the potential of the synthesized 3D hollow polymer to be used for CO2 capturing with a gas capacity of about 68 mg/g and regeneration ability without the need for heat up.


2022 ◽  
Author(s):  
Huiju Wang ◽  
Minghong Yang ◽  
Dongdong Wang ◽  
Kang Li ◽  
Shoujia Wang ◽  
...  

A novel ionic liquid (i.e. 1-butyl-3-methylimidazolium hexafluorophosphate, [C4MIM]PF6) doped poly-N-phenylpyrrole (PPPy) composite coating ([C4MIM]PF6@PPPy) was successfully fabricated by direct electrochemical polymerization on the surface of NiTi substrate as solid phase...


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 148
Author(s):  
Hong-Ju Ahn ◽  
Seil Kim ◽  
Kwang Ho Kim ◽  
Joo-Yul Lee

In this study, we prepared Te nanorod arrays via a galvanic displacement reaction (GDR) on a Si wafer, and their composite with poly(3,4-ethylenedioxythiophene) (PEDOT) were successfully synthesized by electrochemical polymerization with lithium perchlorate (LiClO4) as a counter ion. The thermoelectric performance of the composite film was optimized by adjusting the polymerization time. As a result, a maximum power factor (PF) of 235 µW/mK2 was obtained from a PEDOT/Te composite film electrochemically polymerized for 15 s at room temperature, which was 11.7 times higher than that of the PEDOT film, corresponding to a Seebeck coefficient (S) of 290 µV/K and electrical conductivity (σ) of 28 S/cm. This outstanding PF was due to the enhanced interface interaction and carrier energy filtering effect at the interfacial potential barrier between the PEDOT and Te nanorods. This study demonstrates that the combination of an inorganic Te nanorod array with electrodeposited PEDOT is a promising strategy for developing high-performance thermoelectric materials.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shisong Nie ◽  
Zaifang Li ◽  
Yuyuan Yao ◽  
Yingzhi Jin

PEDOT is the most popularly used conductive polymer due to its high conductivity, good physical and chemical stability, excellent optical transparency, and the capabilities of easy doping and solution processing. Based on the advantages above, PEDOT has been widely used in various devices for energy conversion and storage, and bio-sensing. The synthesis method of PEDOT is very important as it brings different properties which determine its applications. In this mini review, we begin with a brief overview of recent researches in PEDOT. Then, the synthesis methods of PEDOT are summarized in detail, including chemical polymerization, electrochemical polymerization, and transition metal-mediated coupling polymerization. Finally, research directions in acquiring high-quality PEDOT are discussed and proposed.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Bingjian Li ◽  
Shi Liu ◽  
Haicun Yang ◽  
Xixi Xu ◽  
Yinjie Zhou ◽  
...  

The charge storage mechanism and capacity of supercapacitors completely depend on the electrochemical and mechanical properties of electrode materials. Herein, continuously reinforced carbon nanotube film (CNTF), as the flexible support layer and the conductive skeleton, was prepared via the floating catalytic chemical vapor deposition (FCCVD) method. Furthermore, a series of novel flexible self-supporting CNTF/polyaniline (PANI) nanocomposite electrode materials were prepared by cyclic voltammetry electrochemical polymerization (CVEP), with aniline and mixed-acid-treated CNTF film. By controlling the different polymerization cycles, it was found that the growth model, morphology, apparent color, and loading amount of the PANI on the CNTF surface were different. The CNTF/PANI-15C composite electrode, prepared by 15 cycles of electrochemical polymerization, has a unique surface, with a "sea-cucumber-like" 3D nanoprotrusion structure and microporous channels formed via the stacking of the PANI nanowires. A CNTF/PANI-15C flexible electrode exhibited the highest specific capacitance, 903.6 F/g, and the highest energy density, 45.2 Wh/kg, at the current density of 1 A/g and the voltage window of 0 to 0.6 V. It could maintain 73.9% of the initial value at a high current density of 10 A/g. The excellent electrochemical cycle and structural stabilities were confirmed on the condition of the higher capacitance retention of 95.1% after 2000 cycles of galvanostatic charge/discharge, and on the almost unchanged electrochemical performances after 500 cycles of bending. The tensile strength of the composite electrode was 124.5 MPa, and the elongation at break was 18.9%.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012057
Author(s):  
Omar A. Kareem ◽  
Sabri J. Mohameed ◽  
Isam M. Ibrahim

Abstract In this study Electrochemical polymerization was used to make polypyrrol nanofiber. The in situ chemical oxidative polymerization approach was used to create a nanocomposite of polypyrrole PPy-TiO2. To achieve homogeneous dispersion inside the PPy matrix, the TiO2 was dissolved and ultrasonically dispersed. The surface morphology of polypyrrol and PPy/TiO2 nanocomposites was studied using field emission scanning electron microscopy (FE-SEM), which revealed of a polypyrrol nanofibre network and showed that the TiO2 nanoparticles was well incorporated. The produced PPy/TiO2 nanocomposite was characterized using XRD (X-Ray diffraction) and FT-IR (Fourier Transform Infrared). The formation of TiO2 nanoparticales on a PPy layer matrix was discovered, as well as homogeneous dispersion of TiO2 inside the PPy matrix and considerable interaction between PPy and TiO2. The produced PPy/TiO2 nanocomposite sensors’ response was investigated towards of light-power sensitivity. The PPy/TiO2 synergistic effects improve the light sensitivity qualities of the photodetector. The maximium sensitivity of PPy/TiO2 was around (188 %) at 20% TiO2 concentration at a light power of 30 mW for a laser diode 720 nm, while the rise time and fall time was ≈ 2.5sec.


2021 ◽  
Author(s):  
Mihaela Beregoi ◽  
Samuel Beaumont ◽  
Alexandru Evanghelidis ◽  
Toribio F. Otero ◽  
Ionut Enculescu

Abstract Artificial muscles comprise a bunch of materials, composites and devices performing a similar behavior to biological muscles, since a mechanical actuation is produced while consuming a certain amount of energy. However, in order to mimic the multiple simultaneous functionalities of the natural muscles, i.e. the proprioception, new devices should be designed. A non-conventional, bioinspired device based on polypyrrole coated electrospun fibrous microstructures, which works simultaneously as artificial muscle and mechanical sensor is reported. A simple fabrication algorithm based on electrospinning, sputtering deposition and electrochemical polymerization produced electroactive aligned ribbon meshes with analogous characteristics as natural muscle fibers. These can simultaneously produce a movement (by applying an electric current/potential) and sense the effort of holding weights (by measuring the potential/current while holding objects up to 24 mg). The amplitude of the movement decreases by increasing the load, a behavior similar with natural muscles. Moreover, when different weights were hanged on the device, it senses the load modification, demonstrating a sensitivity of about 6 mV/mg for oxidation and 3 mV/mg for reduction. These results are important since simultaneous actuation and sensitivity are essential for complex activity. Such devices with multiple functionalities can open new possibilities of applications as smart prosthesis or lifelike robots.


Sign in / Sign up

Export Citation Format

Share Document