scholarly journals Composition and Properties of Triple Superphosphate Obtained from Oyster Shells and Various Concentrations of Phosphoric Acid

ACS Omega ◽  
2021 ◽  
Author(s):  
Somkiat Seesanong ◽  
Chaowared Seangarun ◽  
Banjong Boonchom ◽  
Nongnuch Laohavisuti ◽  
Kittichai Chaiseeda ◽  
...  
1995 ◽  
Vol 44 (2) ◽  
pp. 129-131 ◽  
Author(s):  
Emin Erdem ◽  
Nihat Tinkili� ◽  
V. Turan Yilmaz ◽  
Ahmet Uyanik ◽  
Halis �lmez

2013 ◽  
Vol 9 (2) ◽  
pp. 1943-1952
Author(s):  
Khouloud Nasri ◽  
Chaker Chtara ◽  
Hassen Chekir ◽  
Hafed EL Feki

Triple Superphosphate (TSP) is a chemical fertilizer, acknowledged by its important content of phosphorus, necessary element for plants. It’s obtained by adding phosphoric acid to phosphate ore, consisting of calcium phosphate containing many impurities. TSP was dissolved at different temperatures and in various amounts of water, filtered to remove insoluble compounds. Then the ionic conductivity was monitored for each solution as a function of the added amount of TSP. Aqueous solutions were evaporated to dryness and analyzed the P2O5. The starting materials and final products were analyzed by several methods (XRD, IR, NMR, SEM) confirming that after dissolution the product was purified.


Author(s):  
B. Van Meerbeek ◽  
L. J. Conn ◽  
E. S. Duke

Restoration of decayed teeth with tooth-colored materials that can be bonded to tooth tissue has been a highly desirable property in restorative dentistry for many years. Advantages of such an adhesive restorative technique over conventional techniques using non-adhesive metal-based restoratives include improved restoration retention with minimal sacrifice of sound tooth tissue for retention purposes, superior adaptation and sealing of the restoration margins in prevention of caries recurrence, improved stress distribution across the tooth-restoration interface throughout the whole tooth, and even reinforcement of weakened tooth structures. The dental adhesive technology is rapidly changing. An efficient resin bond to enamel has already long been achieved. Its bonding mechanism has been fully elucidated and has proven to be a durable and reliable clinical treatment. However, bonding to dentin represents a greater challenge. After the failures of a dentin acid-etch technique in imitation of the enamel phosphoric-acid-etch technique and a bonding procedure based on chemical adhesion, modern dentin adhesives are currently believed to bond to dentin by a micromechanical hybridization process. This process is developed by an initial demineralization of the dentin surface layer with acid etchants exposing a collagen fibril arrangement with interfibrillar microporosities that subsequently become impregnated by low-viscosity monomers. Although the development of such a hybridization process has well been documented in the literature, questions remain with respect to parameters of-primary importance to adhesive efficacy.


1884 ◽  
Vol 18 (457supp) ◽  
pp. 7298-7298
Author(s):  
C. Scheibler
Keyword(s):  

1976 ◽  
Vol 37 (C6) ◽  
pp. C6-739-C6-743 ◽  
Author(s):  
P. A. FLINN ◽  
B. J. ZABRANSKY ◽  
S. L. RUBY
Keyword(s):  

Author(s):  
P.W. Shannon

Increasing material, processing, and distribution costs have raised superphosphate prices to a point where many farms cannot support the costs of meeting maintenance phosphate requires men& Alternatives to superphosphate, particularly those that have lower processing costs and contain more P, may offer a solution to the problem provided they are agronomically as effective. Phosphate rock may indeed be such an alternative. Preliminary results from a series of five trials in Northland show that on soils of moderate P fertility, with low phosphate retention (PR) and high pH (5.9.6.0), initial pasture growth responses to rock phosphates are smaller than those from single or triple superphosphate. On one soil of higher PR and lower pH, the differences in yield between the rock-phosphates and the super. phosphates were smaller. Of the rock phosphates tested, Sechura and North Carolina (unground and ungranulated) tended to be more effective than ground and granulated Chatham Rise phosphorite. The effect on production of applying fertilisers once every three years, as opposed to annual applications is being investigated using triple superphosphate and Sechura phosphate rock. After two years, production levels appear largely unaffected by differences in application frequency. A comparison of locally-produced superphosphate with a reference standard showed that both performed similarly, indicating that the local product was of satisfactory quality.


1961 ◽  
Vol 38 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Christian Lauritzen ◽  
Semih Velibese

ABSTRACT A description is given of experimental investigations and preliminary clinical experience with the long-acting oestriol compound polyoestriol phosphate – a water-soluble polymere of oestriol and phosphoric acid. The compound seems to exert all the physiologically important effects of oestriol. Even with high doses the hormone causes no proliferation of the endometrium and no withdrawal bleeding. It has no untoward effect on metabolism. It decreases slightly the cholesterol concentration (to the extent of ⅓–⅕ of the effect produced by long-acting oestradiol esters). The compound has a wide therapeutic range. No side-effects have been observed. Doses of 10 mg or more have a prolonged duration. Additional prolongation of the effect is largely dependent on dosage. To ensure an effect lasting for 4 weeks 40 mg polyoestriol phosphate (corresponding with 30 mg oestriol) is required – an amount which roughly corresponds with physiological quantitative data. The compound, which involves an interesting new principle of prolongation, was most effectively used in the treatment of menopausal symptoms and genital organic disorders. For these indications it can be recommended without reservation.


Sign in / Sign up

Export Citation Format

Share Document