scholarly journals Application of Different Vegetable Oils as Processing Aids in Industrial Rubber Composites: A Sustainable Approach

ACS Omega ◽  
2021 ◽  
Author(s):  
Kumarjyoti Roy ◽  
Nutthapong Poompiew ◽  
Aphiwat Pongwisuthiruchte ◽  
Pranut Potiyaraj
2020 ◽  
Vol 10 (20) ◽  
pp. 7244
Author(s):  
Sung Ho Song

As eco-friendly “green tires” are being developed in the tire industry, conventionally used carbon black is being replaced with silica in rubber compounds. Generally, as a lubricant and dispersing agent, processing aids containing zinc ions have been employed as additives. However, as zinc is a heavy metal, alternative eco-friendly processing aids are required to satisfy worldwide environmental concerns. Furthermore, non-toxic, degradable, and renewable processing aids are required to improve the mechanical properties of the rubber composites. In this study, we evaluated the effects of diverse silica-based processing aids containing hydrocarbon, benzene, and hydroxyl functional groups on the mechanical properties of rubber composites. Among them, rubber composites that used amphiphilic terpene phenol resin (TPR) with hydrophilic silica showed compatibility with the hydrophobic rubber matrix and were revealed to improve the mechanical and fatigue properties. Furthermore, owing to the enhanced dispersion of silica in the rubber matrix, the TPR/styrene butadiene rubber composites exhibited enhanced wet grip and rolling resistance. These results indicated that TPR had multifunctional effects at low levels and has the potential for use as a processing aid in silica-based rubber composites in tire engineering applications.


2015 ◽  
Vol 354 (1) ◽  
pp. 191-196 ◽  
Author(s):  
Worawan Pechurai ◽  
Warunee Chiangta ◽  
Pariya Tharuen

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Nam Chul Kim ◽  
Sung Ho Song

With the development of “green tires” in the tire industry, the conventional carbon black filler that is used in tread formulations is being replaced with silica. Generally, this requires the addition of a processing aid, containing zinc ion, which acts as a lubricant and dispersing agent. However, because zinc is a heavy metal, zinc-free processing aids (ZFAs) are required to satisfy worldwide environmental concerns. We present herein a series of catalytically synthesized ZFAs and evaluate the effects of replacing zinc ion-containing processing aids (ZCAs) on a silica tread formulation. Interestingly, replacing ZCA with ZFA in a two parts per hundred rubber (phr) by weight formulation improved both its tensile strength and elongation by as much as 31% and 20%, respectively. ZFA-rubber formulations also exhibited a twofold enhancement in fatigue properties over those of ZCA-rubber formulations. Furthermore, pneumatic tires were fabricated from our ZFA-rubber formulation and compared against tires containing ZCAs. The ZFA-rubber composite exhibited improved dry and wet braking and rolling resistance due to enhanced dispersion of silica in the rubber matrix. These results show that rubber composites prepared with ZFAs may be promising in tire engineering applications.


2020 ◽  
Vol 54 (23) ◽  
pp. 3405-3413
Author(s):  
Sung Ho Song

With the development of environmentally friendly “green tires” in the tire industry, silica has been used as a reinforcing filler material in tread compounds. With regard to this rubber compounding process, non-toxic, and renewable processing aids are required. We fabricated such processing aids with multi-alcohol components of hydrophobic and hydrophilic groups (M-A-S) to make the hydrophilic silica compatible with the hydrophobic rubber matrix. The rubber composites with M-A-S showed remarkable enhancements in the mechanical properties, specifically the tensile strength, elongation and fatigue properties due to the improved dispersion of silica in the rubber matrix. They also exhibited outstanding heat build-up, good rebound resilience, and abrasion levels at low loadings. Furthermore, M-A-S were added directly to tread compounds to make a pneumatic tire with enhanced high-speed durability and enhanced dry and wet braking due to the strong interfacial interaction between the silica and the rubber matrix. These results demonstrate the advantages of the proposed potential replacement for metal-ion processing aids for tire engineering.


1895 ◽  
Vol 40 (1031supp) ◽  
pp. 16486-16486
Author(s):  
P. L. Simmonds
Keyword(s):  

1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


Sign in / Sign up

Export Citation Format

Share Document