scholarly journals Simultaneous Electrical and Mechanical Characterization of Single-Molecule Junctions Using AFM-BJ Technique

ACS Omega ◽  
2021 ◽  
Author(s):  
Yixuan Zhu ◽  
Zhibing Tan ◽  
Wenjing Hong
2011 ◽  
Vol 82 (5) ◽  
pp. 053907 ◽  
Author(s):  
Christian A. Martin ◽  
Roel H. M. Smit ◽  
Ruud van Egmond ◽  
Herre S. J. van der Zant ◽  
Jan M. van Ruitenbeek

Small Methods ◽  
2020 ◽  
pp. 2001064
Author(s):  
Saisai Yuan ◽  
Tengyang Gao ◽  
Wenqiang Cao ◽  
Zhichao Pan ◽  
Junyang Liu ◽  
...  

ACS Nano ◽  
2015 ◽  
Vol 9 (9) ◽  
pp. 8811-8821 ◽  
Author(s):  
Toni Hoffmann ◽  
Katarzyna M. Tych ◽  
Thomas Crosskey ◽  
Bob Schiffrin ◽  
David J. Brockwell ◽  
...  

2020 ◽  
Author(s):  
María Camarasa-Gómez ◽  
Daniel Hernangómez-Pérez ◽  
Michael S. Inkpen ◽  
Giacomo Lovat ◽  
E-Dean Fung ◽  
...  

Ferrocenes are ubiquitous organometallic building blocks that comprise a Fe atom sandwiched between two cyclopentadienyl (Cp) rings that rotate freely at room temperature. Of widespread interest in fundamental studies and real-world applications, they have also attracted<br>some interest as functional elements of molecular-scale devices. Here we investigate the impact of<br>the configurational degrees of freedom of a ferrocene derivative on its single-molecule junction<br>conductance. Measurements indicate that the conductance of the ferrocene derivative, which is<br>suppressed by two orders of magnitude as compared to a fully conjugated analog, can be modulated<br>by altering the junction configuration. Ab initio transport calculations show that the low conductance is a consequence of destructive quantum interference effects that arise from the hybridization of metal-based d-orbitals and the ligand-based π-system. By rotating the Cp rings, the hybridization, and thus the quantum interference, can be mechanically controlled, resulting in a conductance modulation that is seen experimentally.<br>


2018 ◽  
Author(s):  
Kun Wang ◽  
Andrea Vezzoli ◽  
Iain Grace ◽  
Maeve McLaughlin ◽  
Richard Nichols ◽  
...  

We have used scanning tunneling microscopy to create and study single molecule junctions with thioether-terminated oligothiophene molecules. We find that the conductance of these junctions increases upon formation of charge transfer complexes of the molecules with tetracyanoethene, and that the extent of the conductance increase is greater the longer is the oligothiophene, i.e. the lower is the conductance of the uncomplexed molecule in the junction. We use non-equilibrium Green's function transport calculations to explore the reasons for this theoretically, and find that new resonances appear in the transmission function, pinned close to the Fermi energy of the contacts, as a consequence of the charge transfer interaction. This is an example of a room temperature quantum interference effect, which in this case boosts junction conductance in contrast to earlier observations of QI that result in diminished conductance.<br>


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

Author(s):  
Alexandre Luiz Pereira ◽  
Rafael Oliveira Santos ◽  
DOINA BANEA ◽  
Álisson Lemos

Sign in / Sign up

Export Citation Format

Share Document