Chip-Scale Integration of Nanophotonic-Atomic Magnetic Sensors

ACS Photonics ◽  
2020 ◽  
Author(s):  
Yoel Sebbag ◽  
Alex Naiman ◽  
Eliran Talker ◽  
Yefim Barash ◽  
Uriel Levy
Author(s):  
Yoel Sebbag ◽  
Alex Naiman ◽  
Eliran Talker ◽  
Yefim Barash ◽  
Uriel Levy

1988 ◽  
Vol 135 (6) ◽  
pp. 281
Author(s):  
J.B. Butcher ◽  
K.K. Johnstone

2014 ◽  
Vol 155 (26) ◽  
pp. 1011-1018 ◽  
Author(s):  
György Végvári ◽  
Edina Vidéki

Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy beween organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants’ life. Orv. Hetil., 2014, 155(26), 1011–1018.


Author(s):  
O. Crépel ◽  
Y. Bouttement ◽  
P. Descamps ◽  
C. Goupil ◽  
P. Perdu ◽  
...  

Abstract We developed a system and a method to characterize the magnetic field induced by circuit board and electronic component, especially integrated inductor, with magnetic sensors. The different magnetic sensors are presented and several applications using this method are discussed. Particularly, in several semiconductor applications (e.g. Mobile phone), active dies are integrated with passive components. To minimize magnetic disturbance, arbitrary margin distances are used. We present a system to characterize precisely the magnetic emission to insure that the margin is sufficient and to reduce the size of the printed circuit board.


Author(s):  
YongAn LI

Background: The symbolic nodal analysis acts as a pivotal part of the very large scale integration (VLSI) design. Methods: In this work, based on the terminal relations for the pathological elements and the voltage differencing inverting buffered amplifier (VDIBA), twelve alternative pathological models for the VDIBA are presented. Moreover, the proposed models are applied to the VDIBA-based second-order filter and oscillator so as to simplify the circuit analysis. Results: The result shows that the behavioral models for the VDIBA are systematic, effective and powerful in the symbolic nodal circuit analysis.</P>


2021 ◽  
Vol 168 ◽  
pp. 112398
Author(s):  
Slavomir Entler ◽  
Ivan Duran ◽  
Martin Kocan ◽  
George Vayakis ◽  
Petr Sladek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document