Environmental Remediation of Chlorinated Hydrocarbons Using Biopolymer Stabilized Iron Loaded Halloysite Nanotubes

2017 ◽  
Vol 5 (11) ◽  
pp. 10976-10985 ◽  
Author(s):  
Yang Su ◽  
Yueheng Zhang ◽  
Hang Ke ◽  
Gary McPherson ◽  
Jibao He ◽  
...  
Langmuir ◽  
2011 ◽  
Vol 27 (12) ◽  
pp. 7854-7859 ◽  
Author(s):  
Bhanukiran Sunkara ◽  
Jingjing Zhan ◽  
Igor Kolesnichenko ◽  
Yingqing Wang ◽  
Jibao He ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1632
Author(s):  
Sneha Bhagyaraj ◽  
Igor Krupa

Environmental remediation using green approaches for addressing various pollution-related issues, especially water pollution, is in high demand. Here, we designed an environmentally friendly, low-cost, and stable sodium alginate–halloysite clay composite aerogel (SAHA) for oil/water separation via a two-step synthesis procedure, including ionic crosslinking and freeze-drying. The as-prepared SAHA aerogels were characterized in detail by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transformation infrared (FT-IR) spectroscopy. Characterization of the SAHA aerogels revealed a three-dimensional porous microstructure with uniformly dispersed halloysite nanotubes (HA) within the alginate matrix. The elemental composition of the hydrogels investigated using energy dispersive X-ray spectrometry (EDX) revealed the presence of minerals, such as magnesium, sodium, aluminum, and silicon in the SAHA aerogels. The presence of a hydrophilic alginate matrix combined with these unique morphological characteristics resulted in SAHA aerogels with underwater oleophobicity and excellent oil/water separation efficiency (up to 99.7%). The ease of fabrication, excellent oil/water separation, and multiple performances make the SAHA aerogel an interesting candidate for practical applications in water recycling.


Clay Minerals ◽  
2016 ◽  
Vol 51 (3) ◽  
pp. 303-308 ◽  
Author(s):  
G. Jock Churchman ◽  
Pooria Pasbakhsh ◽  
Stephen Hillier

Up until about 2005, the main application of halloysites had been as an alternative raw material to kaolinite for ceramics. Since then, however, there has been an exponential increase in studies aimed at applications of halloysite nanotubes, now widely referred to as HNTs. The readily available and relatively cheap nanotubular forms of halloysite have potential uses in nanocomposites with polymers, as carriers for active agents, e.g. in medicine, agriculture, cosmetics and environmental remediation, as well as in nanotemplating, as supports for catalyst immobilization and as heterogeneous catalysts.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


2016 ◽  
Vol 15 (4) ◽  
pp. 923-934 ◽  
Author(s):  
Mohammadreza Kamali ◽  
Ana Paula Duarte Gomes ◽  
Zahra Khodaparast ◽  
Tahereh Seifi

2019 ◽  
Author(s):  
Chem Int

Iron nanoparticles have gained tremendous attention due to their application in magnetic storage media, ferrofluids, biosensors, catalysts, separation processes, environmental remediation and antibacterial activity. In the present paper, iron nanoparticles were synthesized using aqueous flower extract of Piliostigma thonningii, a natural nontoxic herbal infusion. Iron nanoparticles were generated by reaction of ferrous chloride solution with the flower extract. The reductants present in the flower extract acted as reducing and stabilizing agents. UV-vis analysis of the iron nanoparticles showed continuous absorption in the visible range suggesting the iron nanoparticles were amorphous. This was confirmed by X-ray diffraction (XRD) analysis which did not have distinct diffraction peaks. Scanning electron microscopy (SEM) analysis revealed that the synthesized iron nanoparticles were aggregated as irregular clusters with rough surfaces. FT-IR studies showed the functional groups that participated in the bio-reduction process to include a C-H stretch (due to alkane CH3, CH2 or CH), C=O stretch (due to aldehydes), O-H bend (due to tert-alcohol or phenol), C-O stretch (due to aldehydes or phenols) and C-O stretch (due to alcohols) corresponding to absorptions at 2929.00, 1721.53, 1405.19, 1266.31 and 1030.02 cm-1 respectively. The iron nanoparticles showed significant antibacterial activity against Escharichia coli and Staphylococcus aureus suggesting potential antibacterial application.


Sign in / Sign up

Export Citation Format

Share Document