Green synthesis of iron nanoparticles using flower extract of Piliostigma thonningii and their antibacterial activity evaluation

2019 ◽  
Author(s):  
Chem Int

Iron nanoparticles have gained tremendous attention due to their application in magnetic storage media, ferrofluids, biosensors, catalysts, separation processes, environmental remediation and antibacterial activity. In the present paper, iron nanoparticles were synthesized using aqueous flower extract of Piliostigma thonningii, a natural nontoxic herbal infusion. Iron nanoparticles were generated by reaction of ferrous chloride solution with the flower extract. The reductants present in the flower extract acted as reducing and stabilizing agents. UV-vis analysis of the iron nanoparticles showed continuous absorption in the visible range suggesting the iron nanoparticles were amorphous. This was confirmed by X-ray diffraction (XRD) analysis which did not have distinct diffraction peaks. Scanning electron microscopy (SEM) analysis revealed that the synthesized iron nanoparticles were aggregated as irregular clusters with rough surfaces. FT-IR studies showed the functional groups that participated in the bio-reduction process to include a C-H stretch (due to alkane CH3, CH2 or CH), C=O stretch (due to aldehydes), O-H bend (due to tert-alcohol or phenol), C-O stretch (due to aldehydes or phenols) and C-O stretch (due to alcohols) corresponding to absorptions at 2929.00, 1721.53, 1405.19, 1266.31 and 1030.02 cm-1 respectively. The iron nanoparticles showed significant antibacterial activity against Escharichia coli and Staphylococcus aureus suggesting potential antibacterial application.

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3578
Author(s):  
Mohd Shahrul Nizam Salleh ◽  
Roshafima Rasit Ali ◽  
Kamyar Shameli ◽  
Mohd Yusof Hamzah ◽  
Rafiziana Md Kasmani ◽  
...  

The production of pure silver nanoparticles (Ag-NPs) with unique properties remains a challenge even today. In the present study, the synthesis of silver nanoparticles (Ag-NPs) from natural pullulan (PL) was carried out using a radiation-induced method. It is known that pullulan is regarded as a microbial polysaccharide, which renders it suitable to act as a reducing and stabilizing agent during the production of Ag-NPs. Pullulan-assisted synthesis under gamma irradiation was successfully developed to obtain Ag-NPs, which was characterized by UV-Vis, XRD, TEM, and Zeta potential analysis. Pullulan was used as a stabilizer and template for the growth of silver nanoparticles, while gamma radiation was modified to be selective to reduce silver ions. The formation of Ag-NPs was confirmed using UV–Vis spectra by showing a surface plasmon resonance (SPR) band in the region of 420–435 nm. As observed by TEM images, it can be said that by increasing the radiation dose, the particle size decreases, resulting in a mean diameter of Ag-NPs ranging from 40.97 to 3.98 nm. The XRD analysis confirmed that silver metal structures with a face-centered cubic (FCC) crystal were present, while TEM images showed a spherical shape with smooth edges. XRD also demonstrated that increasing the dose of gamma radiation increases the crystallinity at a high purity of Ag-NPs. As examined by zeta potential, the synthesized Ag-NP/PL was negatively charged with high stability. Ag-NP/PL was then analysed for antimicrobial activity against Staphylococcus aureus, and it was found that it had high antibacterial activity. It is found that the adoption of radiation doses results in a stable and green reduction process for silver nanoparticles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 708
Author(s):  
Clayton Farrugia ◽  
Alessandro Di Mauro ◽  
Frederick Lia ◽  
Edwin Zammit ◽  
Alex Rizzo ◽  
...  

Photocatalysis has long been touted as one of the most promising technologies for environmental remediation. The ability of photocatalysts to degrade a host of different pollutants, especially recalcitrant molecules, is certainly appealing. Titanium dioxide (TiO2) has been used extensively for this purpose. Anodic oxidation allows for the synthesis of a highly ordered nanotubular structure with a high degree of tunability. In this study, a series of TiO2 arrays were synthesised using different electrolytes and different potentials. Mixed anatase-rutile photocatalysts with excellent wettability were achieved with all the experimental iterations. Under UVA light, all the materials showed significant photoactivity towards different organic pollutants. The nanotubes synthesised in the ethylene glycol-based electrolyte exhibited the best performance, with near complete degradation of all the pollutants. The antibacterial activity of this same material was similarly high, with extremely low bacterial survival rates. Increasing the voltage resulted in wider and longer nanotubes, characteristics which increase the level of photocatalytic activity. The ease of synthesis coupled with the excellent activity makes this a viable material that can be used in flat-plate reactors and that is suitable for photocatalytic water treatment.


2015 ◽  
Vol 14 (14) ◽  
pp. 1234-1241 ◽  
Author(s):  
Y. M. Mohamed ◽  
A. M. Azzam ◽  
B. H. Amin ◽  
N. A. Safwat

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1046
Author(s):  
M. Sharmila ◽  
R. Jothi Mani ◽  
Abdul Kader ◽  
Awais Ahmad ◽  
Gaber E. Eldesoky ◽  
...  

The innovation and development of water purification methods have been at the center of extensive research for several decades. Many nanoparticles are frequently seen in industrial waste water. In this research, zinc oxide nanoparticles (ZnO) were synthesized following an autocombustion method with and without honey capping. Structural crystallinity and bonding structure were examined via X-ray diffraction (XRD) analysis and Fourier transform infrared (FTIR) spectroscopy. Optical behavior was analyzed using ultraviolet–visible (UV–Vis) spectroscopy and photoluminescence (PL). Size estimation and surface morphology were studied using scanning electron microscopy (SEM), while energy-dispersive spectroscopy (EDS) was performed to analyze the sample purity and elemental composition. The photocatalytic degradation of methylene blue (MB) by ZnO was assessed as it is an efficient water treatment process with high potential. The biological activity of ZnO nanoparticles was also investigated in terms of antibacterial and antifungal activities against different bacterial and fungal species. Surprisingly, the as-synthesized ZnO nanoparticles were found to be substantially bioactive compared to conventional drugs. Honey-mediated nanoparticles displayed 86% dye degradation efficiency, and that of bare ZnO was 60%. Therefore, the involvement of honey in the synthesis of ZnO nanoparticles has great potential due to its dual applicability in both biological and environmental remediation processes.


2020 ◽  
Vol 83 (1) ◽  
pp. 19-25
Author(s):  
Suntini Suntini ◽  
Anastasia Wheni Indrianingsih ◽  
Harjono Harjono

Recently, a wound healing from natural composite with excellent properties is in a high demand. In this study, a novel composite of bacterial cellulose made from Siwalan sap (Borassus flabellifer) was achieved. Siwalan is a common plant in Java Island of Indonesia and the application is very limited for beverage only. This study aims to determine the effect of the AgNO3/NaBH4 concentration ratio in the development of Ag-BC composites and its antibacterial properties from Siwalan sap. Ag-BC composites were prepared by impregnating the silver solution into the BC matrix through the reduction process with NaBH4. Characterization of Ag-BC composites conducted using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX). Antibacterial assay was performed using disc diffusion method against Salmonella typhimurium (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The characterization of Ag-BC composite shows the nanostructure of BC with a length of fiber around 35-60 nm in width. The SEM-EDX micrograph showed that silver particles were impregnated into the BC matrix. Antibacterial activity test results showed that the Ag-BC composite had the ability to inhibit the bacteria S. typhimurium and S. aureus with good inhibition. This result showed the potential application of Ag-BC composite from Siwalan plant as a natural material for medical and pharmaceutical purpose, especially as an antibacterial agent.


Sign in / Sign up

Export Citation Format

Share Document