Recyclable β-Glucosidase by One-Pot Encapsulation with Cu-MOFs for Enhanced Hydrolysis of Cellulose to Glucose

2019 ◽  
Vol 7 (3) ◽  
pp. 3339-3348 ◽  
Author(s):  
Lei Wang ◽  
Wenjing Zhi ◽  
Jing Wan ◽  
Juan Han ◽  
Chunmei Li ◽  
...  
2020 ◽  
Vol 22 (16) ◽  
pp. 5437-5446 ◽  
Author(s):  
Hassan Idris Abdu ◽  
Kamel Eid ◽  
Aboubakr M. Abdullah ◽  
Mostafa H. Sliem ◽  
Ahmed Elzatahry ◽  
...  

Edge-carboxylated graphene (ECG) crumpled nanosheets with tuneable COOH content were synthesized by a facile one pot approach for selective hydrolysis of cellulose to glucose and eucalyptus to xylose and glucose under ambient conditions.


2018 ◽  
Vol 169 ◽  
pp. 244-247 ◽  
Author(s):  
Feng Shen ◽  
Tianmeng Guo ◽  
Chenxi Bai ◽  
Mo Qiu ◽  
Xinhua Qi

2012 ◽  
Vol 14 ◽  
pp. 1741-1747 ◽  
Author(s):  
Suli Zhi ◽  
Yanli Liu ◽  
Xiaoyan Yu ◽  
Xinying Wang ◽  
Xuebin Lu

2020 ◽  
Vol 16 ◽  
pp. 1713-1721
Author(s):  
Isaline Bonnin ◽  
Raphaël Mereau ◽  
Thierry Tassaing ◽  
Karine De Oliveira Vigier

The catalytic conversion of (ligno)cellulose is currently subject of intense research. Isosorbide is one of the interesting products that can be produced from (ligno)cellulose as it can be used for the synthesis of a wide range of pharmaceuticals, chemicals, and polymers. Isosorbide is obtained after the hydrolysis of cellulose to glucose, followed by the hydrogenation of glucose to sorbitol that is then dehydrated to isosorbide. The one-pot process requires an acid and a hydrogenation catalyst. Several parameters are of importance during the direct conversion of (ligno)cellulose such as the acidity, the crystallinity and the particle size of cellulose as well as the nature of the feedstocks. This review highlights all these parameters and all the strategies employed to produce isosorbide from (ligno)cellulose in a one-pot process.


2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


2013 ◽  
Vol 85 (17) ◽  
pp. 8121-8126 ◽  
Author(s):  
Britta Opitz ◽  
Andreas Prediger ◽  
Christian Lüder ◽  
Marrit Eckstein ◽  
Lutz Hilterhaus ◽  
...  

2021 ◽  
Author(s):  
Yuxiao Dong ◽  
Dongshen Tong ◽  
Laibin Ren ◽  
Xingtao Chen ◽  
Hao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document