Intersubunit communications in Escherichia coli cyclic AMP receptor protein: studies of the ligand binding domain

Biochemistry ◽  
1992 ◽  
Vol 31 (14) ◽  
pp. 3682-3688 ◽  
Author(s):  
Ewa Heyduk ◽  
Tomasz Heyduk ◽  
James C. Lee
1986 ◽  
Vol 236 (3) ◽  
pp. 643-649 ◽  
Author(s):  
A M Gronenborn ◽  
G M Clore

Overproduction of the cyclic AMP receptor protein (CRP) from Escherichia coli, up to 25% of the soluble cell protein, has been achieved in an inducible host-vector system under transcriptional control of the lambda promoter PL. This system is ideally suited for large scale production and purification of CRP. In addition, a structural gene for the DNA-binding domain of CRP has been constructed. To this end the nucleotide sequence coding for the C-terminus was fused to the sequence coding for the first 10 N-terminal amino acids and cloned into suitable vectors. Good expression was achieved using the lambda PL promoter. The gene product, beta CRP, is recognized by anti-CRP antibodies.


1980 ◽  
Vol 26 (12) ◽  
pp. 1508-1511 ◽  
Author(s):  
Ann D. E. Fraser ◽  
Hiroshi Yamazaki

It has not been clarified whether the utilization of mannose by Escherichia coli requires adenosine 3′,5′-cyclic monophosphate (cyclic AMP). Using an adenylyl cyclase deficient mutant (CA8306B) and a cyclic AMP receptor protein (CRP) deficient mutant (5333B) we have shown that the utilization of mannose is dependent on the cyclic AMP–CRP complex. 2-Deoxyglucose (DG) is a nonmetabolizable glucose analog specific for the phosphotransferase system (PTS) which transports mannose (termed here PTSM). Growth of CA8306B on glycerol is unaffected by addition of the analog, whereas growth of the strain on glycerol plus cyclic AMP ceases im mediately upon addition of DG. These results suggest that the formation of PTSM is dependent on cyclic AMP. In addition, CA8306B grown on glycerol plus cyclic AMP can immediately utilize mannose when transferred to a medium containing mannose as a sole carbon source, whereas the same strain grown on glycerol without cyclic AMP cannot utilize mannose when so transferred. These results suggest that the formation of PTSM does not require an exogenous inducer.


1995 ◽  
Vol 308 (1) ◽  
pp. 353-359 ◽  
Author(s):  
M Berggren Söderlund ◽  
G Johannesson ◽  
G Fex

all-trans-Retinoic acid, one of the hormonally active derivatives of vitamin A, occurs physiologically in plasma at a concentration below 10 nmol/l. The methods currently used for its quantification are based on HPLC, need about 1 ml of serum, are relatively laborious and thus not well suited for mass analysis. The affinity and specificity of retinoic acid receptors for all-trans-retinoic acid encouraged us to express both the entire human retinoic acid receptor beta (RAR-beta) and two versions of its retinoic acid-binding domain in Escherichia coli in the hope that these recombinant proteins might be used as binders in a ligand-binding assay for all-trans-retinoic acid. The recombinant receptors, the whole receptor [RAR-beta-(V7-Q448)], corresponding to domains A-F, and the ligand-binding domain [RAR-beta-(E149-Q448)], corresponding to domains D-F, were expressed in the vector pET 3d/BL21 (DE3) as inclusion bodies, solubilized with guanidinium chloride, renatured and purified by ion-exchange chromatography. RAR-beta-(P193-Q448), corresponding to domains E-F, was expressed in the vector pET 3d/BL21(DE3)pLysS, and purified by reversed-phase chromatography. Under non-denaturing conditions, the expressed whole receptor [RAR-beta-(V7-Q448)] and the D-F construct (RAR-beta-(E149-Q448)] behaved chromatographically as monomeric proteins whereas the E-F construct [RAR-beta-(P193-Q448)] had a strong tendency to aggregate. RAR-beta-(V7-Q448) and RAR-beta-(E149-Q448) had similar Kd values for all-trans-retinoic acid (1.4 and 0.6 nmol/l respectively) whereas RAR-beta-(P193-Q448) bound all-trans-retinoic acid less avidly (Kd 9.6 nmol/l). 9-cis-Retinoic acid bound to RAR-beta-(E149-Q448) and RAR-beta-(V7-Q448) as avidly as all-trans-retinoic acid. Competition experiments showed weak or no binding of 4-oxo-all-trans-retinoic acid, 4-oxo-13-cis-retinoic acid, 13-cis-retinoic acid, acitretin and retinol by RAR-beta-(E149-Q448).


Sign in / Sign up

Export Citation Format

Share Document