Fucoxanthin-Chlorophyll a/c Light-Harvesting Complexes of Laminaria saccharina: Partial Amino Acid Sequences and Arrangement in Thylakoid Membranes

Biochemistry ◽  
1994 ◽  
Vol 33 (11) ◽  
pp. 3165-3170 ◽  
Author(s):  
Dominique Douady ◽  
Bernard Rousseau ◽  
Lise Caron
1986 ◽  
Vol 102 (3) ◽  
pp. 972-981 ◽  
Author(s):  
B D Kohorn ◽  
E Harel ◽  
P R Chitnis ◽  
J P Thornber ◽  
E M Tobin

The precursor for a Lemna light-harvesting chlorophyll a/b protein (pLHCP) has been synthesized in vitro from a single member of the nuclear LHCP multigene family. We report the sequence of this gene. When incubated with Lemna chloroplasts, the pLHCP is imported and processed into several polypeptides, and the mature form is assembled into the light-harvesting complex of photosystem II (LHC II). The accumulation of the processed LHCP is enhanced by the addition to the chloroplasts of a precursor and a co-factor for chlorophyll biosynthesis. Using a model for the arrangement of the mature polypeptide in the thylakoid membrane as a guide, we have created mutations that lie within the mature coding region. We have studied the processing, the integration into thylakoid membranes, and the assembly into light-harvesting complexes of six of these deletions. Four different mutant LHCPs are found as processed proteins in the thylakoid membrane, but only one appears to have an orientation in the membrane that is similar to that of the wild type. No mutant LHCP appears in LHC II. The other two mutant LHCPs cannot be detected within the chloroplasts. We conclude that stable complex formation is not required for the processing and insertion of altered LHCPs into the thylakoid membrane. We discuss the results in light of our model.


1988 ◽  
Vol 43 (1-2) ◽  
pp. 77-83 ◽  
Author(s):  
Iwan Bissig ◽  
René A. Brunisholz ◽  
Franz Suter ◽  
Richard J. Cogdell ◽  
Herbert Zuber

Spectrally pure B 800-850 light harvesting complexes of Rhodopseudomonas acidophila 7750 were prepared by chromatography of LDAO-solubilised photosynthetic membranes on Whatmann DE-52 ion exchange resin. Two low molecular mass polypeptides (α, β) have been isolated by organic solvent extraction of the lyophilised B 800-850 light harvesting complexes. Their primary structures were determined by liquid phase sequencer runs, by the sequence analyses of C-terminal o-iodosobenzoic acid fragments, by hydrazinolysis and by carboxypeptidase degradation. B 800-850-a consists of 53 amino acids and is 45.3% and 50.9% homologous to the B 800-850- a antenna polypeptides of Rhodobacter sphaeroides and Rhodobacter capsulatus, respectively. The second very short polypeptide (B800-850-β, 41 amino acids) is 61.0% and 56.1% homologous to the corresponding polypeptides of Rb. sphaeroides and Rb. capsulatus. The molar ratio of the two polypeptides is about 1:1. Both polypeptides show a hydrophilic N-terminal domain, a very hydrophobic central domain and a short C-terminal domain. In both polypeptides the typical His residues, identified in all antenna polypeptides of purple nonsulphur bacteria as possible bacteriochlorophyll binding sites, were found


2004 ◽  
Vol 186 (21) ◽  
pp. 7420-7428 ◽  
Author(s):  
Beronda L. Montgomery ◽  
Elena Silva Casey ◽  
Arthur R. Grossman ◽  
David M. Kehoe

ABSTRACT All known phycobiliproteins have light-harvesting roles during photosynthesis and are found in water-soluble phycobilisomes, the light-harvesting complexes of cyanobacteria, cyanelles, and red algae. Phycobiliproteins are chromophore-bearing proteins that exist as heterodimers of α and β subunits, possess a number of highly conserved amino acid residues important for dimerization and chromophore binding, and are invariably 160 to 180 amino acids long. A new and unusual group of proteins that is most closely related to the allophycocyanin members of the phycobiliprotein superfamily has been identified. Each of these proteins, which have been named allophycocyanin-like (Apl) proteins, apparently contains a 28-amino-acid extension at its amino terminus relative to allophycocyanins. Apl family members possess the residues critical for chromophore interactions, but substitutions are present at positions implicated in maintaining the proper α-β subunit interactions and tertiary structure of phycobiliproteins, suggesting that Apl proteins are able to bind chromophores but fail to adopt typical allophycocyanin conformations. AplA isolated from the cyanobacterium Fremyella diplosiphon contained a covalently attached chromophore and, although present in the cell under a number of conditions, was not detected in phycobilisomes. Thus, Apl proteins are a new class of photoreceptors with a different cellular location and structure than any previously described members of the phycobiliprotein superfamily.


2021 ◽  
Author(s):  
Babak Hassanzadeh ◽  
Blair Thomson ◽  
Fenella Deans ◽  
Jess Wenley ◽  
Scott Lockwood ◽  
...  

Microbial rhodopsins are simple light-harvesting complexes that, unlike chlorophyll photosystems, have no iron requirements for their synthesis and phototrophic functions. Here we report environmental concentrations of rhodopsin along the Subtropical Frontal Zone off New Zealand, where Subtropical waters encounter the iron-limited Subantarctic High Nutrient Low Chlorophyll (HNLC) region. Rhodopsin concentrations were highest in HNLC waters where chlorophyll-a concentrations were lowest. Furthermore, while the ratio of rhodopsin to chlorophyll-a photosystems was on average 20 along the transect, this ratio increased to over 60 in HNLC waters. We further show that microbial rhodopsins are abundant in both picoplankton (0.2-3μm) and in the larger (>3μm) size fractions of the microbial community containing eukaryotic plankton and/or particle-attached prokaryotes. These findings suggest that rhodopsin phototrophy could be critical for microbial plankton to adapt to resource-limiting environments where photosynthesis and possibly cellular respiration are impaired.


Sign in / Sign up

Export Citation Format

Share Document