stable integration
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 12)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Fatemeh Nafian ◽  
Simin Nafian ◽  
Ghazal Soleymani ◽  
Zahra Pourmanouchehri ◽  
Mahnaz Kiyanjam ◽  
...  

Recently, nucleic acid-based RNA and DNA vaccines have represented a better solution to avoid infectious diseases than “traditional” live and non-live vaccines. Synthetic RNA and DNA molecules allow scalable, rapid, and cell-free production of vaccines in response to an emerging disease such as the current COVID-19 pandemic. The development process begins with laboratory transcription of sequences encoding antigens, which are then formulated for delivery. The various potent of RNA over live and inactivated viruses are proven by advances in delivery approaches. These vaccines contain no infectious elements nor the risk of stable integration with the host cell genome compared to conventional vaccines. Conventional mRNA-based vaccines transfer genes of interest (GOI) of attenuated mRNA viruses to individual host cells. Synthetic mRNA in liposomes forms a modern, refined sample, resulting in a safer version of live attenuated RNA viruses. Self-amplifying RNA (saRNA) is a replicating version of mRNA-based vaccines that encode both (GOI) and viral replication machinery. saRNA is required at lower doses than conventional mRNA, which may improve immunization. Here we provide an overview of current mRNA vaccine approaches, summarize highlight challenges and recent successes, and offer perspectives on the future of mRNA vaccines.


2021 ◽  
Author(s):  
Heinz Hanßmann ◽  
Angelina Momin

We re-consider Schelling’s (1971) bounded neighbourhood model as put into the form of a dynamical system by Haw and Hogan (2018). In the case of a single neighbourhood we explain the occurring bifurcation set, thereby correcting a minor scaling error. In the case of two neighbourhoods we correct a major error and derive a dynamical system that does satisfy the modeling assumptions made by Haw and Hogan (2020), staying as close as possible to their construction. We find that stable integration then is only possible if the populations in the two neighbourhoods have the option to be in neither neighbourhood. In the absence of direct movement between the neighbourhoods the problem is furthermore equivalent to independent single neighbourhood problems.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 107
Author(s):  
Javier Porcayo Loza ◽  
Anna Chailyan ◽  
Jochen Forster ◽  
Michael Katz ◽  
Uffe Hasbro Mortensen ◽  
...  

Approximately 25% of all carbohydrates in industrial worts are poorly, if at all, fermented by brewing yeast. This includes dextrins, β-glucans, arabinose, xylose, disaccharides such as isomaltose, nigerose, kojibiose, and trisaccharides such as panose and isopanose. As the efficient utilization of carbohydrates during the wort’s fermentation impacts the alcohol yield and the organoleptic traits of the product, developing brewing strains with enhanced abilities to ferment subsets of these sugars is highly desirable. In this study, we developed Saccharomyces pastorianus laboratory yeast strains with a superior capacity to grow on isomaltose and panose. First, we designed a plasmid toolbox for the stable integration of genes into lager strains. Next, we used the toolbox to elevate the levels of the α-glucoside transporter Agt1 and the major isomaltase Ima1. This was achieved by integrating synthetic AGT1 and IMA1 genes under the control of strong constitutive promoters into defined genomic sites. As a result, strains carrying both genes showed a superior capacity to grow on panose and isomaltose, indicating that Ima1 and Agt1 act in synergy to consume these sugars. Our study suggests that non-GMO strategies aiming to develop strains with improved isomaltose and panose utilization could include identifying strains that overexpress AGT1 and IMA1.


2020 ◽  
Vol 1 (3) ◽  
pp. 100184 ◽  
Author(s):  
Alberto E. Ayala-Sarmiento ◽  
Naomi Kobritz ◽  
Joshua J. Breunig

2020 ◽  
Vol 16 (11) ◽  
pp. e1008389
Author(s):  
Christoph Stelzer ◽  
Yaakov Benenson

The mapping of molecular inputs to their molecular outputs (input/output, I/O mapping) is an important characteristic of gene circuits, both natural and synthetic. Experimental determination of such mappings for synthetic circuits is best performed using stably integrated genetic constructs. In mammalian cells, stable integration of complex circuits is a time-consuming process that hampers rapid characterization of multiple circuit variants. On the other hand, transient transfection is quick. However, it is an extremely noisy process and it is unclear whether the obtained data have any relevance to the input/output mapping of a circuit obtained in the case of a stable integration. Here we describe a data processing workflow, Peakfinder algorithm for flow cytometry data (PFAFF), that allows extracting precise input/output mapping from single-cell protein expression data gathered by flow cytometry after a transient transfection. The workflow builds on the numerically-proven observation that the multivariate modes of input and output expression of multi-channel flow cytometry datasets, pre-binned by the expression level of an independent transfection reporter gene, harbor cells with circuit gene copy numbers distributions that depend deterministically on the properties of a bin. We validate our method by simulating flow cytometry data for seven multi-node circuit architectures, including a complex bi-modal circuit, under stable integration and transient transfection scenarios. The workflow applied to the simulated transient transfection data results in similar conclusions to those reached with simulated stable integration data. This indicates that the input/output mapping derived from transient transfection data using our method is an excellent approximation of the ground truth. Thus, the method allows to determine input/output mapping of complex gene network using noisy transient transfection data.


2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Antonio García-Moyano ◽  
Øivind Larsen ◽  
Sushil Gaykawad ◽  
Eleni Christakou ◽  
Catherine Boccadoro ◽  
...  

ABSTRACT Since its discovery as part of the bacterial adaptative immune system, CRISPR/Cas has emerged as the most promising tool for targeted genome editing over the past few years. Various tools for genome editing in Bacillus subtilis have recently been developed, expanding and simplifying its potential development as an industrial species. A collection of vectors compatible with high-throughput (HTP) fragment exchange (FX) cloning for heterologous expression in Escherichia coli and Bacillus was previously developed. This vector catalogue was through this work supplemented with editing plasmids for genome engineering in Bacillus by adapting two CRISPR/Cas plasmids to the cloning technology. The customized tools allow versatile editing at any chosen genomic position (single-plasmid strategy) or at a fixed genomic locus (double-plasmid strategy). The single-plasmid strategy was validated by deleting the spoIIAC gene, which has an essential role in sporulation. Using the double-plasmid strategy, we demonstrate the quick transition from plasmid-based subtilisin expression to the stable integration of the gene into the amyE locus of a seven-protease-deficient KO7 strain. The newly engineered B. subtilis strain allowed the successful production of a functional enzyme. The customized tools provide improvements to the cloning procedure, should be useful for versatile genomic engineering, and contribute to a cloning platform for a quick transition from HTP enzyme expression to production through the fermentation of industrially relevant B. subtilis and related strains. IMPORTANCE We complemented a cloning platform with new editing plasmids that allow a quick transition from high-throughput cloning and the expression of new enzymes to the stable integration of genes for the production of enzymes through B. subtilis fermentation. We present two systems for the effective assembly cloning of any genome-editing cassette that shortens the engineering procedure to obtain the final editing constructs. The utility of the customized tools is demonstrated by disrupting Bacillus’ capacity to sporulate and by introducing the stable expression of subtilisin. The tools should be useful to engineer B. subtilis strains by a variety of recombination events to ultimately improve the application range of this industry-relevant host.


2019 ◽  
Vol 133 (1) ◽  
pp. jcs240754 ◽  
Author(s):  
Aleksandar Vještica ◽  
Magdalena Marek ◽  
Pedro Junior Nkosi ◽  
Laura Merlini ◽  
Gaowen Liu ◽  
...  

2019 ◽  
Author(s):  
Aleksandar Vještica ◽  
Magdalena Marek ◽  
Pedro N’kosi ◽  
Laura Merlini ◽  
Gaowen Liu ◽  
...  

AbstractSchizosaccharomyces pombe is a widely used model organism that resembles higher eukaryotes in many aspects of cell physiology. Its popularity as an experimental system partially stems from the ease of genetic manipulations, where the innate homology-targeted repair is exploited to precisely edit the genome. While vectors to incorporate exogenous sequences into the chromosomes are available, most are poorly characterized. Here we show that commonly used fission yeast vectors, which upon integration produce repetitive genomic regions, yield unstable genomic loci. We overcome this problem by designing a new series of Stable Integration Vectors (SIV) that target four different prototrophy genes. SIV produce non-repetitive, stable genomic loci and integrate predominantly as single copy. Additionally, we develop a set of complementary auxotrophic alleles that preclude false-positive integration events. We expand the vector series to include antibiotic resistance markers, promoters, fluorescent tags and terminators, and build a highly modular toolbox to introduce heterologous sequences. Finally, as proof of concept, we generate a large set of ready-to-use, fluorescent probes to mark organelles and cellular processes with a wide range of applications in fission yeast research.


Sign in / Sign up

Export Citation Format

Share Document