Amino acid sequences and calcium-binding properties of two isoforms of barnacle troponin C

Biochemistry ◽  
1991 ◽  
Vol 30 (3) ◽  
pp. 702-707 ◽  
Author(s):  
John H. Collins ◽  
Janet L. Theibert ◽  
Jean Marie Francois ◽  
C. C. Ashley ◽  
James D. Potter
1989 ◽  
Vol 264 (30) ◽  
pp. 18247-18259
Author(s):  
T Kobayashi ◽  
T Takagi ◽  
K Konishi ◽  
W Wnuk

1979 ◽  
Vol 57 (6) ◽  
pp. 737-748 ◽  
Author(s):  
Theo Hofmann ◽  
Michiko Kawakami ◽  
Anthony J. W. Hitchman ◽  
Joan E. Harrison ◽  
Keith J. Dorrington

The complete amino acid sequence of the calcium-binding protein (CaBP) from pig intestinal mucosa has been determined: Ac-Ser-Ala-Gln-Lys-Ser-Pro-Ala-Glu-Leu-Lys-Ser-Ile-Phe-Glu-Lys-Tyr-Ala-Ala-Lys-Glu-Gly-Asp-Pro-Asn-Gln-Leu-Ser-Lys-Glu-Glu-Leu-Lys-Gln-Leu-Ile-Gln-Ala-Glu-Phe-Pro-Ser-Leu-Leu-Lys-Gly-Pro-Arg-Thr-Leu-Asp-Asp-Leu-Phe-Gln-Glu-Leu-Asp-Lys-Asn-Gly-Asn-Gly-Glu-Val-Ser-Phe-Glu-Glu-Phe-Gln-Val-Leu-Val-Lys-Lys-Ile-Ser-Gln-OH. The N-terminal octapeptide sequence was determined by mass spectrometry analysis by Morris and Dell. The first 45 residues of bovine CaBP differ only in six positions from the corresponding sequence of the porcine protein, except that the sequence starts in position two of the porcine sequence. The mammalian intestinal CaBP's belong to the troponin-C superfamily on the basis of an analysis by Barker and Dayhoff.


2021 ◽  
Vol 77 (5) ◽  
pp. 690-702
Author(s):  
Pandian Ramesh ◽  
Selvarajan Sigamani Sundaresan ◽  
Nagaraj Shobana ◽  
Thangaraj Vinuchakkaravarthy ◽  
Kandasamy Sivakumar ◽  
...  

Crystal structures of hemoglobin (Hb) from two flightless birds, ostrich (Struthio camelus) and turkey (Meleagris gallopova), were determined. The ostrich Hb structure was solved to a resolution of 2.22 Å, whereas two forms of turkey Hb were solved to resolutions of 1.66 Å (turkey monoclinic structure; TMS) and 1.39 Å (turkey orthorhombic structure; TOS). Comparison of the amino-acid sequences of ostrich and turkey Hb with those from other avian species revealed no difference in the number of charged residues, but variations were observed in the numbers of hydrophobic and polar residues. Amino-acid-composition-based computation of various physical parameters, in particular their lower inverse transition temperatures and higher average hydrophobicities, indicated that the structures of ostrich and turkey Hb are likely to be highly ordered when compared with other avian Hbs. From the crystal structure analysis, the liganded state of ostrich Hb was confirmed by the presence of an oxygen molecule between the Fe atom and the proximal histidine residue in all four heme regions. In turkey Hb (both TMS and TOS), a water molecule was bound instead of an oxygen molecule in all four heme regions, thus confirming that they assumed the aqua-met form. Analysis of tertiary- and quaternary-structural features led to the conclusion that ostrich oxy Hb and turkey aqua-met Hb adopt the R-/RH-state conformation.


Biochemistry ◽  
1997 ◽  
Vol 36 (17) ◽  
pp. 5120-5127 ◽  
Author(s):  
John F. McDonald ◽  
Amit M. Shah ◽  
Ruth A. Schwalbe ◽  
Walter Kisiel ◽  
Björn Dahlbäck ◽  
...  

1994 ◽  
Vol 304 (3) ◽  
pp. 833-841 ◽  
Author(s):  
Y Wu ◽  
J Deford ◽  
R Benjamin ◽  
M G Lee ◽  
L Ruben

The flagellum of Trypanosoma brucei contains calmodulin, and a separate family of antigenically related EF-hand calcium-binding proteins which we call calflagins. The following study evaluates the structure and genomic organization of the calflagin family. Genomic Southern blots indicated that multiple copies of calflagin genes occurred in T. brucei, and that all of these copies were contained in a single 23 kb XhoI-XhoI fragment on chromosomes 15 and 16 mRNAs of 1.2 and 1.6 kb were identified in bloodstream and procyclic life-cycle stages. Genomic fragments of 2.5 and 1.7 kb were cloned that encoded calflagin sequences. The calflagin genes were arranged tandemly along the genomic fragments. Three new members of the calflagin family were sequenced from a cDNA clone and the two genomic clones. Two unrelated families of 3′ flanking sequences were downstream from the calflagin genes. An open reading frame that was unrelated to any calflagin sequence was at the 5′ end of the 2.5 kb genomic fragment. The deduced amino acid sequences of the genomic clones (called Tb-24 and Tb-1.7g) were similar to the previously described Tb-17. Each encoded an approximately 24 kDa protein which contained three EF-hand calcium-binding motifs and one degenerate EF-hand motif. The cDNA encoded a protein (called Tb-44A) which was approximately twice as large as the other calflagins. The large size resulted from a nearly direct repeat of 186 amino acids. In general, variability among the T. brucei calflagins was greater than observed for related proteins from Trypanosoma cruzi. We demonstrate that this variability resulted from amino acid substitutions at the N-terminus, C-terminal extensions, and duplication of internal segments.


1983 ◽  
Vol 3 (11) ◽  
pp. 1071-1075 ◽  
Author(s):  
J. P. Mac Manus ◽  
D. C. Watson ◽  
M. Yaguchi

When the amino-acid sequence of the 108-residue, rat tumour calcium-binding protein, oncomodulin, was aligned with that of rat muscle parvalbumin, 55 homologous positions were found, with an additional 33 single base-pair substitutions. This extensive homology, with virtual identity of the calcium-binding domains, signalled oncomodulin to be a member of the troponin C superfamily. The presence of Cys-18 and Phe-66 in oncomodulin, plus its isoelectric point of 3.9) suggest that this tumour protein is a 8-parva Jbumin, rather than a muscle α-parvalbumin.


Sign in / Sign up

Export Citation Format

Share Document