Structure-Based Kinetic Modeling of Excited-State Transfer and Trapping in Histidine-Tagged Photosystem II Core Complexes fromSynechocystis†

Biochemistry ◽  
2002 ◽  
Vol 41 (40) ◽  
pp. 12236-12243 ◽  
Author(s):  
Sergei Vassiliev ◽  
Cheng-I Lee ◽  
Gary W. Brudvig ◽  
Doug Bruce
2001 ◽  
Vol 98 (15) ◽  
pp. 8602-8607 ◽  
Author(s):  
S. Vasil'ev ◽  
P. Orth ◽  
A. Zouni ◽  
T. G. Owens ◽  
D. Bruce

2015 ◽  
Vol 17 (8) ◽  
pp. 5538-5542 ◽  
Author(s):  
James K. Utterback ◽  
Molly B. Wilker ◽  
Katherine A. Brown ◽  
Paul W. King ◽  
Joel D. Eaves ◽  
...  

Kinetic modeling of transient absorption measurements provides rate constants for the excited state relaxation processes relevant for photochemical H2 generation.


2019 ◽  
Vol 23 (11n12) ◽  
pp. 1336-1345
Author(s):  
S. Jimena Mora ◽  
Daniel A. Heredia ◽  
Emmanuel Odella ◽  
Uma Vrudhula ◽  
Devens Gust ◽  
...  

Benzimidazole phenol-porphyrin dyads have been synthesized to study proton-coupled electron transfer (PCET) reactions induced by photoexcitation. High-potential porphyrins have been chosen to model P680, the photoactive chlorophyll cluster of photosynthetic photosystem II (PSII). They have either two or three pentafluorophenyl groups at the meso positions to impart the high redox potential. The benzimidazole phenol (BIP) moiety models the Tyr[Formula: see text]-His190 pair of PSII, which is a redox mediator that shuttles electrons from the water oxidation catalyst to P680[Formula: see text]. The dyads consisting of a porphyrin and an unsubstituted BIP are designed to study one-electron one-proton transfer (E1PT) processes upon excitation of the porphyrin. When the BIP moiety is substituted with proton-accepting groups such as imines, one-electron two-proton transfer (E2PT) processes are expected to take place upon oxidation of the phenol by the excited state of the porphyrin. The bis-pentafluorophenyl porphyrins linked to BIPs provide platforms for introducing a variety of electron-accepting moieties and/or anchoring groups to attach semiconductor nanoparticles to the macrocycle. The triads thus formed will serve to study the PCET process involving the BIPs when the oxidation of the phenol is achieved by the photochemically produced radical cation of the porphyrin.


1998 ◽  
Vol 102 (45) ◽  
pp. 9174-9180 ◽  
Author(s):  
F. T. H. den Hartog ◽  
F. Vacha ◽  
A. J. Lock ◽  
J. Barber ◽  
J. P. Dekker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document