scholarly journals A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

Biochemistry ◽  
2011 ◽  
Vol 50 (12) ◽  
pp. 2357-2363 ◽  
Author(s):  
Samuel H. Light ◽  
George Minasov ◽  
Ludmilla Shuvalova ◽  
Scott N. Peterson ◽  
Michael Caffrey ◽  
...  
2015 ◽  
Vol 71 (11) ◽  
pp. 1408-1415 ◽  
Author(s):  
Jan Stránský ◽  
Tomáš Koval' ◽  
Tomáš Podzimek ◽  
Anna Týcová ◽  
Petra Lipovová ◽  
...  

Tomato multifunctional nuclease TBN1 belongs to the type I nuclease family, which plays an important role in apoptotic processes and cell senescence in plants. The newly solved structure of the N211D mutant is reported. Although the main crystal-packing motif (the formation of superhelices) is conserved, the details differ among the known structures. A phosphate ion was localized in the active site of the enzyme. The binding of the surface loop to the active centre is stabilized by the phosphate ion, which correlates with the observed aggregation of TBN1 in phosphate buffer. The conserved binding of the surface loop to the active centre suggests biological relevance of the contact in a regulatory function or in the formation of oligomers.


2015 ◽  
Vol 418 ◽  
pp. 50-56 ◽  
Author(s):  
Shijia Liu ◽  
Shangjin Shao ◽  
Linlin Li ◽  
Zhi Cheng ◽  
Li Tian ◽  
...  

2008 ◽  
Vol 48 (supplement) ◽  
pp. S40
Author(s):  
Keisuke Sakurai ◽  
Katsuyoshi Harada ◽  
Kunitoshi Shimokata ◽  
Takashi Hayashi ◽  
Hideo Shimada

2014 ◽  
Vol 70 (a1) ◽  
pp. C1207-C1207
Author(s):  
Leighton Coates

β-lactam antibiotics have been used effectively over several decades against many types of highly virulent bacteria. The predominant cause of resistance to these antibiotics in Gram-negative bacterial pathogens is the production of serine β-lactamase enzymes. A key aspect of the class A serine β-lactamase mechanism that remains unresolved and controversial is the identity of the residue acting as the catalytic base during the acylation reaction. Multiple mechanisms have been proposed for the formation of the acyl-enzyme intermediate that are predicated on understanding the protonation states and hydrogen-bonding interactions among the important residues involved in substrate binding and catalysis of these enzymes. For resolving a controversy of this nature surrounding the catalytic mechanism, neutron crystallography is a powerful complement to X-ray crystallography that can explicitly determine the location of deuterium atoms in proteins, thereby directly revealing the hydrogen-bonding interactions of important amino acid residues. Neutron crystallography was used to unambiguously reveal the ground-state active site protonation states and the resulting hydrogen-bonding network in two ligand-free Toho-1 β-lactamase mutants which provided remarkably clear pictures of the active site region prior to substrate binding and subsequent acylation [1,2] and an acylation transition-state analog, benzothiophene-2-boronic acid (BZB), which was also isotopically enriched with 11B. The neutron structure revealed the locations of all deuterium atoms in the active site region and clearly indicated that Glu166 is protonated in the BZB transition-state analog complex. As a result, the complete hydrogen-bonding pathway throughout the active site region could then deduced for this protein-ligand complex that mimics the acylation tetrahedral intermediate [3].


Sign in / Sign up

Export Citation Format

Share Document