Force Transmission at Cell–Cell and Cell–Matrix Adhesions

Biochemistry ◽  
2014 ◽  
Vol 53 (49) ◽  
pp. 7706-7717 ◽  
Author(s):  
Kris A. DeMali ◽  
Xiaowen Sun ◽  
Gabrielle A. Bui
2021 ◽  
Author(s):  
Abhishek Mukherjee ◽  
Elisabeth Nadjar-Boger ◽  
Michael P. Sheetz ◽  
Haguy Wolfenson

AbstractThe physical interactions of cells with their external environment are critical for their survival and function. These interactions are altered upon epithelial to mesenchymal transition (EMT) as cells switch from relying primarily on cell-cell adhesions to relying on cell-matrix adhesions. Mechanical signals are central to regulating these two types of interactions, but the crosstalk and the mechanobiological processes that mediate the transition between them are poorly understood. Here we show that α-catenin, a mechanosensitive protein that regulates cadherin-based cell-cell adhesions, directly interacts with integrin adhesions and regulates their growth as well as their transmission of mechanical forces into the matrix. In mesenchymal cells, α-catenin is recruited to the cell edge where it interacts with actin in regions devoid of α-actinin. As actin and α-catenin flow from the cell edge toward the center, α-catenin interacts with vinculin within integrin adhesions to mediate adhesion maturation, enhance force transmission, and drive the proper assembly of actin stress fibers. Importantly, in the absence of α-catenin–vinculin interactions, cell adhesion to the matrix is impaired, and the cells display aberrant responses to matrix rigidity which is manifested in rigidity-independent growth. These results provide a novel understanding of α-catenin as having a dual-role in mechanosensing by both cell-cell and cell-matrix adhesions.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Mei Rosa Ng ◽  
Achim Besser ◽  
Joan S Brugge ◽  
Gaudenz Danuser

Force transduction at cell-cell adhesions regulates tissue development, maintenance and adaptation. We developed computational and experimental approaches to quantify, with both sub-cellular and multi-cellular resolution, the dynamics of force transmission in cell clusters. Applying this technology to spontaneously-forming adherent epithelial cell clusters, we found that basal force fluctuations were coupled to E-cadherin localization at the level of individual cell-cell junctions. At the multi-cellular scale, cell-cell force exchange depended on the cell position within a cluster, and was adaptive to reconfigurations due to cell divisions or positional rearrangements. Importantly, force transmission through a cell required coordinated modulation of cell-matrix adhesion and actomyosin contractility in the cell and its neighbors. These data provide insights into mechanisms that could control mechanical stress homeostasis in dynamic epithelial tissues, and highlight our methods as a resource for the study of mechanotransduction in cell-cell adhesions.


Author(s):  
Hao Ding ◽  
Ping Zhou ◽  
Wenxuan Fu ◽  
Lurong Ding ◽  
Weiliang Guo ◽  
...  
Keyword(s):  

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3063 ◽  
Author(s):  
Isabelle Breloy ◽  
Franz-Georg Hanisch

O-Glycosylation in general has impact on a diversity of biological processes covering cellular aspects (targeted transport of glycoproteins), molecular aspects (protein conformation, resistance to proteolysis), and aspects involved in cellular communication (cell-cell and cell-matrix interaction). [...]


Sign in / Sign up

Export Citation Format

Share Document