force transduction
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Aapo Tervonen ◽  
Sanna Korpela ◽  
Soile Nymark ◽  
Jari Hyttinen ◽  
Teemu O Ihalainen

AbstractIn recent years, the importance of mechanical signaling and the cellular mechanical microenvironment in affecting cellular behavior has been widely accepted. Cells in epithelial monolayers are mechanically connected to each other and the underlying extracellular matrix (ECM), forming a highly connected mechanical system subjected to various mechanical cues from their environment, such as the ECM stiffness. Changes in the ECM stiffness have been linked to many pathologies, including tumor formation. However, our understanding of how ECM stiffness and its heterogeneities affect the transduction of mechanical forces in epithelial monolayers is lacking. To investigate this, we used a combination of experimental and computational methods. The experiments were conducted using epithelial cells cultured on an elastic substrate and applying a mechanical stimulus by moving a single cell by micromanipulation. To replicate our experiments computationally and quantify the forces transduced in the epithelium, we developed a new model that described the mechanics of both the cells and the substrate. Our model further enabled the simulations with local stiffness heterogeneities. We found the substrate stiffness to distinctly affect the force transduction as well as the cellular movement and deformation following an external force. Also, we found that local changes in the stiffness can alter the cells’ response to external forces over long distances. Our results suggest that this long-range signaling of the substrate stiffness depends on the cells’ ability to resist deformation. Furthermore, we found that the cell’s elasticity in the apico-basal direction provides a level of detachment between the apical cell-cell junctions and the basal focal adhesions. Our simulation results show potential for increased ECM stiffness, e.g. due to a tumor, to modulate mechanical signaling between cells also outside the stiff region. Furthermore, the developed model provides a good platform for future studies on the interactions between epithelial monolayers and elastic substrates.Author summaryCells can communicate using mechanical forces, which is especially important in epithelial tissues where the cells are highly connected. Also, the stiffness of the material under the cells, called the extracellular matrix, is known to affect cell behavior, and an increase in this stiffness is related to many diseases, including cancers. However, it remains unclear how the stiffness affects intercellular mechanical signaling. We studied this effect using epithelial cells cultured on synthetic deformable substrates and developed a computational model to quantify the results better. In our experiments and simulations, we moved one cell to observe how the substrate stiffness impacts the deformation of the neighboring cells and thus the force transduction between the cells. Our model also enabled us to study the effect of local stiffness changes on the force transduction. Our results showed that substrate stiffness has an apparent impact on the force transduction within the epithelial tissues. Furthermore, we found that the cells can communicate information on the local stiffness changes over long distances. Therefore, our results indicate that the cellular mechanical signaling could be affected by changes in the substrate stiffness which may have a role in the progression of diseases such as cancer.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aditi ◽  
Supriyo Das ◽  
Ram Gopal

Purpose Si-based micro electro mechanical systems (MEMS) magnetometer does not require specialized magnetic materials avoiding magnetic hysteresis, ease in fabrication and low power consumption. It can be fabricated using the same processes used for gyroscope and accelerometer fabrication. The paper reports the dicing mechanism for the released MEMS xylophone magnetic sensor fabricated using wafer bonding technology and its characterization in ambient pressure and under vacuum conditions. The purpose of this paper is to dice the wafer bonded Si-magnetometer in a cost-effective way without the use of laser dicing and test it for Lorentz force transduction. Design/methodology/approach A xylophone bar MEMS magnetometer using Lorentz force transduction is developed. The fabricated MEMS-based xylophone bars in literature are approximately 500 µm. The present work shows the released structure (L = 592 µm) fabricated by anodic bonding technique using conducting Si as the structural layer and tested for Lorentz force transduction. The microstructures fabricated at the wafer level are released. Dicing these released structures using conventional diamond blade dicing may damage the structures and reduce the yield. To avoid the problem, positive photoresist S1813 was filled before dicing. The dicing of the wafer, filled with photoresist and later removal of photoresist post dicing, is proposed. Findings The devices realized are stiction free and straight. The dynamic measurements are done using laser Doppler vibrometer to verify the released structure and test its functionality for Lorentz force transduction. The magnetic field is applied using a permanent magnet and Helmholtz coil. Two sensors with quality factors 70 and 238 are tested with resonant frequency 112.38 kHz and 114.38 kHz, respectively. The sensor D2, with Q as 238, shows a mechanical sensitivity of 500 pm/Gauss and theoretical Brownian noise-limited resolution of 53 nT/vHz. Originality/value The methodology and the study will help develop Lorentz force–based MEMS magnetometers such that stiction-free structures are released using wet etch after the mechanical dicing.


Author(s):  
Matthew H. Zimmer ◽  
Michiel JM. Niesen ◽  
Thomas F. Miller
Keyword(s):  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Verena Kanoldt ◽  
Carleen Kluger ◽  
Christiane Barz ◽  
Anna-Lena Schweizer ◽  
Deepak Ramanujam ◽  
...  

AbstractVinculin is a ubiquitously expressed protein, crucial for the regulation of force transduction in cells. Muscle cells express a vinculin splice-isoform called metavinculin, which has been associated with cardiomyopathies. However, the molecular function of metavinculin has remained unclear and its role for heart muscle disorders undefined. Here, we have employed a set of piconewton-sensitive tension sensors to probe metavinculin mechanics in cells. Our experiments reveal that metavinculin bears higher molecular forces but is less frequently engaged as compared to vinculin, leading to altered force propagation in cell adhesions. In addition, we have generated knockout mice to investigate the consequences of metavinculin loss in vivo. Unexpectedly, these animals display an unaltered tissue response in a cardiac hypertrophy model. Together, the data reveal that the transduction of cell adhesion forces is modulated by expression of metavinculin, yet its role for heart muscle function seems more subtle than previously thought.


2020 ◽  
Author(s):  
Matthew H Zimmer ◽  
Michiel JM Niesen ◽  
Thomas F Miller

AbstractForce-sensitive arrest peptides regulate protein biosynthesis by stalling the ribosome as they are translated. Synthesis can be resumed when the nascent arrest peptide experiences a pulling force of sufficient magnitude to break the stall. Efficient stalling is dependent on the specific identity of a large number of amino acids, including amino acids which are tens of angstroms away from the peptidyl transferase center (PTC). The mechanism of force-induced restart and the role of these essential amino acids far from the PTC is currently unknown. We use hundreds of independent molecular dynamics trajectories spanning over 120 μs in combination with kinetic analysis to characterize the barriers along the force-induced restarting pathway for the arrest peptide SecM. We find that the essential amino acids far from the PTC play a major role in controlling the transduction of applied force. In successive states along the stall-breaking pathway, the applied force propagates up the nascent chain until it reaches the C-terminus of SecM and the PTC, inducing conformational changes that allow for restart of translation. A similar mechanism of force propagation through multiple states is observed in the VemP stall-breaking pathway, but secondary structure in VemP allows for heterogeneity in the order of transitions through intermediate states. Results from both arrest peptides explain how residues that are tens of angstroms away from the catalytic center of the ribosome impact stalling efficiency by mediating the response to an applied force and shielding the amino acids responsible for maintaining the stalled state of the PTC.Significance StatementAs nascent proteins are synthesized by the ribosome, their interactions with the environment can create pulling forces on the nascent protein that can be transmitted to the ribosome’s catalytic center. These forces can affect the rate and even the outcome of translation. We use simulations to characterize the pathway of force transduction along arrest peptides and discover how secondary structure in the nascent protein and its interactions with the ribosome exit tunnel impede force propagation. This explains how amino acids in arrest peptides that are tens of angstroms away from the ribosome’s catalytic center contribute to stalling, and, more broadly, suggests how structural features in the nascent protein dictate the ribosome’s ability to functionally respond to its environment.


2020 ◽  
Vol 117 (16) ◽  
pp. 9064-9073
Author(s):  
David de Semir ◽  
Vladimir Bezrookove ◽  
Mehdi Nosrati ◽  
Kara R. Scanlon ◽  
Eric Singer ◽  
...  

The invasive behavior of glioblastoma is essential to its aggressive potential. Here, we show that pleckstrin homology domain interacting protein (PHIP), acting through effects on the force transduction layer of the focal adhesion complex, drives glioblastoma motility and invasion. Immunofluorescence analysis localized PHIP to the leading edge of glioblastoma cells, together with several focal adhesion proteins: vinculin (VCL), talin 1 (TLN1), integrin beta 1 (ITGB1), as well as phosphorylated forms of paxillin (pPXN) and focal adhesion kinase (pFAK). Confocal microscopy specifically localized PHIP to the force transduction layer, together with TLN1 and VCL. Immunoprecipitation revealed a physical interaction between PHIP and VCL. Targeted suppression of PHIP resulted in significant down-regulation of these focal adhesion proteins, along with zyxin (ZYX), and produced profoundly disorganized stress fibers. Live-cell imaging of glioblastoma cells overexpressing a ZYX-GFP construct demonstrated a role for PHIP in regulating focal adhesion dynamics. PHIP silencing significantly suppressed the migratory and invasive capacity of glioblastoma cells, partially restored following TLN1 or ZYX cDNA overexpression. PHIP knockdown produced substantial suppression of tumor growth upon intracranial implantation, as well as significantly reduced microvessel density and secreted VEGF levels. PHIP copy number was elevated in the classical glioblastoma subtype and correlated with elevated EGFR levels. These results demonstrate PHIP’s role in regulating the actin cytoskeleton, focal adhesion dynamics, and tumor cell motility, and identify PHIP as a key driver of glioblastoma migration and invasion.


2020 ◽  
Vol 118 (6) ◽  
pp. 1344-1356 ◽  
Author(s):  
Carleen Kluger ◽  
Lukas Braun ◽  
Steffen M. Sedlak ◽  
Diana A. Pippig ◽  
Magnus S. Bauer ◽  
...  

2020 ◽  
Vol 118 (3) ◽  
pp. 161a-162a
Author(s):  
Deborah E. Leckband ◽  
Taylor P. Light ◽  
Vinh H. Vu ◽  
Brendan G. Sullivan ◽  
Kalina Hristova

2020 ◽  
Vol 30 (4) ◽  
pp. 2615-2626 ◽  
Author(s):  
Ahmad Alhourani ◽  
Anna Korzeniewska ◽  
Thomas A Wozny ◽  
Witold J Lipski ◽  
Efstathios D Kondylis ◽  
...  

Abstract The subthalamic nucleus (STN) is proposed to participate in pausing, or alternately, in dynamic scaling of behavioral responses, roles that have conflicting implications for understanding STN function in the context of deep brain stimulation (DBS) therapy. To examine the nature of event-related STN activity and subthalamic-cortical dynamics, we performed primary motor and somatosensory electrocorticography while subjects (n = 10) performed a grip force task during DBS implantation surgery. Phase-locking analyses demonstrated periods of STN-cortical coherence that bracketed force transduction, in both beta and gamma ranges. Event-related causality measures demonstrated that both STN beta and gamma activity predicted motor cortical beta and gamma activity not only during force generation but also prior to movement onset. These findings are consistent with the idea that the STN participates in motor planning, in addition to the modulation of ongoing movement. We also demonstrated bidirectional information flow between the STN and somatosensory cortex in both beta and gamma range frequencies, suggesting robust STN participation in somatosensory integration. In fact, interactions in beta activity between the STN and somatosensory cortex, and not between STN and motor cortex, predicted PD symptom severity. Thus, the STN contributes to multiple aspects of sensorimotor behavior dynamically across time.


Author(s):  
Hemin Zhang ◽  
Milind Pandit ◽  
Jiangkun Sun ◽  
Dongyang Chen ◽  
Guillermo Sobreviela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document