Ca2+Coordination to Backbone Carbonyl Oxygen Atoms in Calmodulin and Other EF-Hand Proteins: 15N Chemical Shifts as Probes for Monitoring Individual-Site Ca2+Coordination†

Biochemistry ◽  
1998 ◽  
Vol 37 (20) ◽  
pp. 7617-7629 ◽  
Author(s):  
Rodolfo R. Biekofsky ◽  
Stephen R. Martin ◽  
J. Peter Browne ◽  
Peter M. Bayley ◽  
James Feeney

1988 ◽  
Vol 53 (3) ◽  
pp. 588-592 ◽  
Author(s):  
Antonín Lyčka ◽  
Josef Jirman ◽  
Jaroslav Holeček

The 17O and 13C NMR spectra of eight geminal diacetates RCH(O(CO)CH3)2 derived from simple aldehydes have been measured. In contrast to the dicarboxylates R1R2E(O(CO)R3)2, where E = Si, Ge, or Sn, whose 17O NMR spectra only contain a single signal, and, on the other hand, in accordance with organic carboxylic esters, the 17O NMR spectra of the compound group studied always exhibit two well-resolved signals with the chemical shifts δ(17O) in the regions of 183-219 ppm and 369-381 ppm for the oxygen atoms in the groups C-O and C=O, respectively.



2006 ◽  
Vol 20 (4) ◽  
pp. 169-176 ◽  
Author(s):  
Jarosław Spychała

In the light of the usefulness of amidines in medicinal chemistry, this paper considers the effects on biological properties and chemical reactivities of organic molecules affected by intramolecular interactions. The study of chemical shifts has been an important source of information on the electronic structure of amidine salts and their ability to form non-covalent bonds with nucleic acids. The NMR and IR results demonstrate that hydrogen bonds are a force for promoting chemical reactions. The thymine O2 carbonyl oxygen in a close proximity to the amidinium cation does interact with the appropriately spaced amidinium NH donor moieties. The1H-15N 2D NMR (GHSQC and GHMBC) spectra with natural isotopic abundance of15N fully confirm the intramolecular character of the bonds. A rule able to estimate the relative strength of the new multifurcated hydrogen bonds is given. The appearance of the ΔδNHchemical shift differences near zero is due to the strong intramolecular interactions. The strength of the H-bond donation by acetamidines is reflected in the N–H dissociation/recombination process (positive charge shift has been invoked to explain other effects on benzamidines). The temperature dependence of chemical shift for the amidine NH protons in dimethyl sulfoxide solutions is herein discussed.



1979 ◽  
Vol 34 (11) ◽  
pp. 1606-1611 ◽  
Author(s):  
W. Winter ◽  
K.-P. Zeller ◽  
S. Berger

Abstract A low temperature X-ray study of the enol of benzoylacetone indicates fixed positions of the C and O atoms within the enolic ring system and an extensive bond delocalisation over these atoms. The distribution of electron density between the two oxygen atoms shows that the enolic hydrogen is spread over a wide range. This is in accordance with a structural model proposed by de la Vega, whereupon the C and O atoms are kept fixed in their average positions during a tunneling process of the hydrogen between the two oxygen atoms. With this conception, the chemical shifts in the 17O and 13C NMR spectra, the 13C13C spin coupling constants and the temperature independance of these values can be explained.



1994 ◽  
Vol 72 (1) ◽  
pp. 86-99 ◽  
Author(s):  
Ronald J. Parry ◽  
Sunil V. Mhaskar ◽  
Ming-Teh Lin ◽  
Alan E. Walker ◽  
Robson Mafoti

The biosynthesis of the phytotoxin coronatine has been investigated by administration of isotopically labeled precursors to Pseudomonas syringae pv. glycinea. The structure of coronatine contains two moieties of distinct biosynthetic origin, a bicyclic, hydrindanone carboxylic acid (coronafacic acid) and a cyclopropyl α-amino acid (coronamic acid). Investigations of coronafacic acid biosynthesis have shown that this compound is a polyketide derived from three acetate units, one butyrate unit, and one pyruvate unit. The two carbonyl oxygen atoms of coronafacic acid were found to be derived from the oxygen atoms of acetate. Additional experiments are described that rule out some possible modes for assembly of the polyketide chain. Coronamic acid is shown to be derived from L-isoleucine via the intermediacy of L-alloisoleucine. Examination of the mechanism of the cyclization of L-alloisoleucine to coronamic acid revealed that the formation of the cyclopropane ring takes place with the removal of only two hydrogen atoms from the amino acid, one at C-2 and the other at C-6. The nitrogen atom at C-2 of L-alloisoleucine is shown to be retained. On the basis of these observations, a mechanism is postulated for the cyclization reaction that involves the diversion of an enzymatic hydroxylation reaction into an oxidative cyclization. Finally, a precursor incorporation experiment with deuterium-labeled coronamic acid demonstrated that free coronamic acid can be efficiently incorporated into coronatine. This observation indicates that the cyclization of L-alloisoleucine to coronamic acid can occur before formation of the amide bond between coronafacic acid and coronamic acid.



1992 ◽  
Vol 47 (7) ◽  
pp. 952-956
Author(s):  
P. Mikulcik ◽  
P. Bissinger ◽  
J. Riede ◽  
H. Schmidbaur

Ester cleavage of aspartame (L-α-aspartyl-L-phenylalanine methylester) (1), by equimolar quantities of thallium ethoxide is accompanied by intramolecular cyclisation to give thallium 3-benzyl-6-(carboxylatomethyl)-2,5-dioxopiperazine (2). The solid state structure of the crystalline product was determined by single-crystal X-ray diffraction analysis. The cations were found to form four short and four elongated contacts to seven oxygen atoms and one nitrogen atom of a total of six neighbouring 3-benzyl-6-(carboxylatomethyl)-2,5-dioxopiperazine anions. There are inter-anionic hydrogen bonds only between the imino groups and the carbonyl oxygen atoms (O3, O4), featuring a pattern similar to that found for cytosine-guanosine contacts in DNA.



2019 ◽  
Vol 151 (7) ◽  
pp. 898-911 ◽  
Author(s):  
Federica Gasparri ◽  
Jesper Wengel ◽  
Thomas Grutter ◽  
Stephan A. Pless

P2X receptors (P2XRs) are trimeric ligand-gated ion channels that open a cation-selective pore in response to ATP binding. P2XRs contribute to synaptic transmission and are involved in pain and inflammation, thus representing valuable drug targets. Recent crystal structures have confirmed the findings of previous studies with regards to the amino acid chains involved in ligand recognition, but they have also suggested that backbone carbonyl atoms contribute to ATP recognition and discrimination. Here we use a combination of site-directed mutagenesis, amide-to-ester substitutions, and a range of ATP analogues with subtle alterations to either base or sugar component to investigate the contributions of backbone carbonyl atoms toward ligand recognition and discrimination in rat P2X2Rs. Our findings demonstrate that while the Lys69 backbone carbonyl makes an important contribution to ligand recognition, the discrimination between different ligands is mediated by both the side chain and the backbone carbonyl oxygen of Thr184. Together, our data demonstrate how conserved elements in P2X2Rs recognize and discriminate agonists.





Sign in / Sign up

Export Citation Format

Share Document