The Potential of Frog Skin Antimicrobial Peptides for Development into Therapeutically Valuable Anti-Infective Agents

Author(s):  
J. M. Conlon
2019 ◽  
Vol 26 (32) ◽  
pp. 5924-5946 ◽  
Author(s):  
Jiri Patocka ◽  
Eugenie Nepovimova ◽  
Blanka Klimova ◽  
Qinghua Wu ◽  
Kamil Kuca

Antimicrobial Peptides (AMPs) are one of the most common components of the innate immune system that protect multicellular organisms against microbial invasion. The vast majority of AMPs are isolated from the frog skin. Anuran (frogs and toads) skin contains abundant AMPs that can be developed therapeutically. Such peptides are a unique but diverse group of molecules. In general, more than 50% of the amino acid residues form the hydrophobic part of the molecule. Normally, there are no conserved structural motifs responsible for activity, although the vast majority of the AMPs are cationic due to the presence of multiple lysine residues; this cationicity has a close relationship with antibacterial activity. Notably, recent evidence suggests that synthesis of AMPs in frog skin may confer an advantage on a particular species, although they are not essential for survival. Frog skin AMPs exert potent activity against antibiotic-resistant bacteria, protozoa, yeasts, and fungi by permeating and destroying the plasma membrane and inactivating intracellular targets. Importantly, since they do not bind to a specific receptor, AMPs are less likely to induce resistance mechanisms. Currently, the best known amphibian AMPs are esculentins, brevinins, ranacyclins, ranatuerins, nigrocin-2, magainins, dermaseptins, bombinins, temporins, and japonicins-1 and -2, and palustrin-2. This review focuses on these frog skin AMPs and the mechanisms underlying their antimicrobial activity. We hope that this review will provide further information that will facilitate further study of AMPs and cast new light on novel and safer microbicides.


2010 ◽  
Vol 54 (9) ◽  
pp. 3853-3860 ◽  
Author(s):  
Daniela Uccelletti ◽  
Elena Zanni ◽  
Ludovica Marcellini ◽  
Claudio Palleschi ◽  
Donatella Barra ◽  
...  

ABSTRACT The emergence of multidrug-resistant (MDR) microorganisms makes it increasingly difficult to treat infections. These infections include those associated with Pseudomonas aeruginosa, which are hard to eradicate, especially in patients with a compromised immune system. Naturally occurring membrane-active cationic antimicrobial peptides (CAMPs) serve as attractive candidates for the development of new therapeutic agents. Amphibian skin is one of the richest sources for such peptides, but only a few studies on their in vivo activities and modes of action have been reported. We investigated (i) the activity and mechanism underlying the killing of short CAMPs from frog skin (e.g., temporins and esculentin fragments) on an MDR clinical isolate of P. aeruginosa and (ii) their in vivo antibacterial activities and modes of action, using the minihost model of Caenorhabditis elegans. Our data revealed that in vivo, both temporin-1Tb and esculentin(1-18) were highly active in promoting the survival of Pseudomonas-infected nematodes, although temporin-1Tb did not show significant activity in vitro under the experimental conditions used. Importantly, esculentin(1-18) permeated the membrane of Pseudomonas cells within the infected nematode. To the best of our knowledge, this is the first report showing the ability of a CAMP to permeate the microbial membrane within a living organism. Besides shedding light on a plausible mode of action of frog skin CAMPs in vivo, our data suggest that temporins and esculentins would be attractive molecules as templates for the development of new therapeutics against life-threatening infections.


FEBS Letters ◽  
1997 ◽  
Vol 414 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Véronique Vouille ◽  
Mohamed Amiche ◽  
Pierre Nicolas

2011 ◽  
Vol 2 (1-2) ◽  
pp. 27-38 ◽  
Author(s):  
Yao Xiao ◽  
Cunbao Liu ◽  
Ren Lai

AbstractIncreased prevalence of multi-drug resistance in pathogens has encouraged researchers to focus on finding novel forms of anti-infective agents. Antimicrobial peptides (AMPs) found in animal secretions are components of host innate immune response and have survived eons of pathogen evolution. Thus, they are likely to be active against pathogens and even those that are resistant to conventional drugs. Many peptides have been isolated and shown to be effective against multi-drug resistant pathogens. More than 500 AMPs have been identified from amphibians. The abundance of AMPs in frog skin is remarkable and constitutes a rich source for design of novel pharmaceutical molecules. Expression and post-translational modifications, discovery, activities and probable therapeutic application prospects of amphibian AMPs will be discussed in this article.


Sign in / Sign up

Export Citation Format

Share Document